1. 几个整式相加减,如果有括号就先
去括号
,然后再合并同类项
.答案:去括号 合并同类项
2. 化简$3(a + b)-2(a - 2b)$的最后结果是
a+7b
.答案:a+7b
解析:
$3(a + b)-2(a - 2b)$
$=3a + 3b - 2a + 4b$
$=(3a - 2a) + (3b + 4b)$
$=a + 7b$
a+7b
$=3a + 3b - 2a + 4b$
$=(3a - 2a) + (3b + 4b)$
$=a + 7b$
a+7b
1. 合并同类项:
(1)$x+(4x - 2)$; (2)$(2x - 3y)+(7x + 4y)$;
(3)$3(2x^{2}+5y)+2(-5x^{2}-3y)$; (4)$2x - 3(x + 1)$;
(5)$-5a - 1-(3a - 7)$; (6)$(3a^{2}-7a)-2(a^{2}-3a + 2)$;
(7)$-5+(x^{2}+3x)-(-9 + 6x^{2})$; (8)$2y-(3x^{2}-4y)+3(x^{2}-y)$.
(1)$x+(4x - 2)$; (2)$(2x - 3y)+(7x + 4y)$;
(3)$3(2x^{2}+5y)+2(-5x^{2}-3y)$; (4)$2x - 3(x + 1)$;
(5)$-5a - 1-(3a - 7)$; (6)$(3a^{2}-7a)-2(a^{2}-3a + 2)$;
(7)$-5+(x^{2}+3x)-(-9 + 6x^{2})$; (8)$2y-(3x^{2}-4y)+3(x^{2}-y)$.
答案:解:(1)原式=x+4x-2=5x-2.
(2)原式=2x-3y+7x+4y=9x+y.
(3)原式=6x²+15y-10x²-6y=-4x²+9y.
(4)原式=2x-3x-3=-x-3.
(5)原式=-5a-1-3a+7=-8a+6.
(6)原式=3a²-7a-2a²+6a-4=a²-a-4.
(7)原式=-5+x²+3x+9-6x²=-5x²+3x+4.
(8)原式=2y-3x²+4y+3x²-3y=3y.
(2)原式=2x-3y+7x+4y=9x+y.
(3)原式=6x²+15y-10x²-6y=-4x²+9y.
(4)原式=2x-3x-3=-x-3.
(5)原式=-5a-1-3a+7=-8a+6.
(6)原式=3a²-7a-2a²+6a-4=a²-a-4.
(7)原式=-5+x²+3x+9-6x²=-5x²+3x+4.
(8)原式=2y-3x²+4y+3x²-3y=3y.
2. 一个多项式加上$3a^{2}+ab - 3b^{2}得4a^{2}-ab - 5b^{2}$,求这个多项式.
答案:解:4a²-ab-5b²-(3a²+ab-3b²)=a²-2ab-2b².
解析:
解:$4a^{2}-ab - 5b^{2}-(3a^{2}+ab - 3b^{2})$
$=4a^{2}-ab - 5b^{2}-3a^{2}-ab + 3b^{2}$
$=a^{2}-2ab - 2b^{2}$
$=4a^{2}-ab - 5b^{2}-3a^{2}-ab + 3b^{2}$
$=a^{2}-2ab - 2b^{2}$
3. 已知$A = 2a^{2}-a$,$B = -5a + 1$,当$a = -\frac{1}{2}$时,求$3A - 2B + 1$的值.
答案:解:3A-2B+1=3(2a²-a)-2(-5a+1)+1=6a²-3a+10a-2+1=6a²+7a-1.
当$a=-\frac{1}{2}$时,原式$=6a²+7a-1=6×(-\frac{1}{2})²+7×(-\frac{1}{2})-1=\frac{3}{2}-\frac{7}{2}-1=-3.$
当$a=-\frac{1}{2}$时,原式$=6a²+7a-1=6×(-\frac{1}{2})²+7×(-\frac{1}{2})-1=\frac{3}{2}-\frac{7}{2}-1=-3.$