19. (12分)计算:
(1)$(-3)+(-9)-(+10)-(-18)$;
(2)$2^{2}-|5 - 8|+12÷(-3)×\frac{1}{3}$;
(3)$(-\frac{1}{2}+\frac{1}{6}-\frac{3}{8}+\frac{5}{24})÷(-\frac{1}{24})$;
(4)$-1^{4}-(1 - 0.4)×\frac{1}{3}×(2 - 3^{2})$.
(1)$(-3)+(-9)-(+10)-(-18)$;
(2)$2^{2}-|5 - 8|+12÷(-3)×\frac{1}{3}$;
(3)$(-\frac{1}{2}+\frac{1}{6}-\frac{3}{8}+\frac{5}{24})÷(-\frac{1}{24})$;
(4)$-1^{4}-(1 - 0.4)×\frac{1}{3}×(2 - 3^{2})$.
答案:(1)−4 (2)$-\frac{1}{3}$ (3)12 (4)$\frac{2}{5}$
解析:
(1)解:$(-3)+(-9)-(+10)-(-18)$
$=-3-9-10+18$
$=(-3-9-10)+18$
$=-22+18$
$=-4$
(2)解:$2^{2}-|5 - 8|+12÷(-3)×\frac{1}{3}$
$=4 - 3 + (-4)×\frac{1}{3}$
$=1 - \frac{4}{3}$
$=-\frac{1}{3}$
(3)解:$(-\frac{1}{2}+\frac{1}{6}-\frac{3}{8}+\frac{5}{24})÷(-\frac{1}{24})$
$=(-\frac{1}{2}+\frac{1}{6}-\frac{3}{8}+\frac{5}{24})×(-24)$
$=-\frac{1}{2}×(-24)+\frac{1}{6}×(-24)-\frac{3}{8}×(-24)+\frac{5}{24}×(-24)$
$=12 - 4 + 9 - 5$
$=12$
(4)解:$-1^{4}-(1 - 0.4)×\frac{1}{3}×(2 - 3^{2})$
$=-1 - 0.6×\frac{1}{3}×(2 - 9)$
$=-1 - 0.2×(-7)$
$=-1 + 1.4$
$=0.4$
$=\frac{2}{5}$
$=-3-9-10+18$
$=(-3-9-10)+18$
$=-22+18$
$=-4$
(2)解:$2^{2}-|5 - 8|+12÷(-3)×\frac{1}{3}$
$=4 - 3 + (-4)×\frac{1}{3}$
$=1 - \frac{4}{3}$
$=-\frac{1}{3}$
(3)解:$(-\frac{1}{2}+\frac{1}{6}-\frac{3}{8}+\frac{5}{24})÷(-\frac{1}{24})$
$=(-\frac{1}{2}+\frac{1}{6}-\frac{3}{8}+\frac{5}{24})×(-24)$
$=-\frac{1}{2}×(-24)+\frac{1}{6}×(-24)-\frac{3}{8}×(-24)+\frac{5}{24}×(-24)$
$=12 - 4 + 9 - 5$
$=12$
(4)解:$-1^{4}-(1 - 0.4)×\frac{1}{3}×(2 - 3^{2})$
$=-1 - 0.6×\frac{1}{3}×(2 - 9)$
$=-1 - 0.2×(-7)$
$=-1 + 1.4$
$=0.4$
$=\frac{2}{5}$
20. (8分)解方程:
(1)$2(x + 1)-3(x - 2)= 4 + x$;
(2)$1-\frac{2x - 1}{6}= \frac{2x + 1}{3}$.
(1)$2(x + 1)-3(x - 2)= 4 + x$;
(2)$1-\frac{2x - 1}{6}= \frac{2x + 1}{3}$.
答案:(1)$x = 2$ (2)$x = \frac{5}{6}$
解析:
(1)解:$2(x + 1)-3(x - 2)= 4 + x$
$2x + 2 - 3x + 6 = 4 + x$
$-x + 8 = 4 + x$
$-x - x = 4 - 8$
$-2x = -4$
$x = 2$
(2)解:$1-\frac{2x - 1}{6}= \frac{2x + 1}{3}$
$6 - (2x - 1) = 2(2x + 1)$
$6 - 2x + 1 = 4x + 2$
$7 - 2x = 4x + 2$
$-2x - 4x = 2 - 7$
$-6x = -5$
$x = \frac{5}{6}$
$2x + 2 - 3x + 6 = 4 + x$
$-x + 8 = 4 + x$
$-x - x = 4 - 8$
$-2x = -4$
$x = 2$
(2)解:$1-\frac{2x - 1}{6}= \frac{2x + 1}{3}$
$6 - (2x - 1) = 2(2x + 1)$
$6 - 2x + 1 = 4x + 2$
$7 - 2x = 4x + 2$
$-2x - 4x = 2 - 7$
$-6x = -5$
$x = \frac{5}{6}$