整式加减的运算法则:一般地,几个整式相加减,如果有括号就先
去括号
,再合并同类项
.答案:去括号 合并同类项
1. 化简$\frac {1}{3}(9x-3)-2(x+1)$的结果是 (
A.$2x-2$
B.$x+1$
C.$5x+3$
D.$x-3$
D
)A.$2x-2$
B.$x+1$
C.$5x+3$
D.$x-3$
答案:D
解析:
解:$\frac{1}{3}(9x - 3) - 2(x + 1)$
$= 3x - 1 - 2x - 2$
$= (3x - 2x) + (-1 - 2)$
$= x - 3$
D
$= 3x - 1 - 2x - 2$
$= (3x - 2x) + (-1 - 2)$
$= x - 3$
D
2. $mn减去m^{2}-mn+n^{2}$等于 (
A.$m^{2}+2mn+n^{2}$
B.$-m^{2}-2mn+n^{2}$
C.$-m^{2}+2mn-n^{2}$
D.$-m^{2}+2mn+n^{2}$
C
)A.$m^{2}+2mn+n^{2}$
B.$-m^{2}-2mn+n^{2}$
C.$-m^{2}+2mn-n^{2}$
D.$-m^{2}+2mn+n^{2}$
答案:C
解析:
解:$mn - (m^2 - mn + n^2)$
$= mn - m^2 + mn - n^2$
$= -m^2 + 2mn - n^2$
C
$= mn - m^2 + mn - n^2$
$= -m^2 + 2mn - n^2$
C
3. 多项式
$-3a + 2$
与$a^{2}+a-2$的和是$a^{2}-2a$.答案:$-3a + 2$
解析:
解:设所求多项式为$M$,则$M + (a^{2} + a - 2) = a^{2} - 2a$,
$M = a^{2} - 2a - (a^{2} + a - 2)$
$= a^{2} - 2a - a^{2} - a + 2$
$= -3a + 2$
$-3a + 2$
$M = a^{2} - 2a - (a^{2} + a - 2)$
$= a^{2} - 2a - a^{2} - a + 2$
$= -3a + 2$
$-3a + 2$
4. 三角形三边的长分别为$(2x+1)cm,(x^{2}-2)cm和(x^{2}-2x+1)cm$,则这个三角形的周长是
$2x²$
cm.答案:$2x²$
解析:
三角形的周长为三边长度之和,即:
$\begin{aligned}&(2x + 1) + (x^2 - 2) + (x^2 - 2x + 1)\\=&2x + 1 + x^2 - 2 + x^2 - 2x + 1\\=&(x^2 + x^2) + (2x - 2x) + (1 - 2 + 1)\\=&2x^2 + 0 + 0\\=&2x^2\end{aligned}$
故答案为:$2x^2$
$\begin{aligned}&(2x + 1) + (x^2 - 2) + (x^2 - 2x + 1)\\=&2x + 1 + x^2 - 2 + x^2 - 2x + 1\\=&(x^2 + x^2) + (2x - 2x) + (1 - 2 + 1)\\=&2x^2 + 0 + 0\\=&2x^2\end{aligned}$
故答案为:$2x^2$
5. 计算:
(1)$2(-4a+3)-(-5a-2)$;
(2)$2(x^{2}-y^{2}+1)-2(x^{2}+y^{2})+xy$;
(3)$(9a-2b)-[8a-(5b-2a)+b]$;
(4)$5(m+n-2)+6(2m-n)-2[\frac {1}{2}(m+2n)-4]$.
(1)$2(-4a+3)-(-5a-2)$;
(2)$2(x^{2}-y^{2}+1)-2(x^{2}+y^{2})+xy$;
(3)$(9a-2b)-[8a-(5b-2a)+b]$;
(4)$5(m+n-2)+6(2m-n)-2[\frac {1}{2}(m+2n)-4]$.
答案:(1)解:原式$=-8a+6+5a+2$
$=(-8a+5a)+(6+2)$
$=-3a+8$
(2)解:原式$=2x^{2}-2y^{2}+2-2x^{2}-2y^{2}+xy$
$=(2x^{2}-2x^{2})+(-2y^{2}-2y^{2})+xy+2$
$=-4y^{2}+xy+2$
(3)解:原式$=9a-2b-[8a-5b+2a+b]$
$=9a-2b-[10a-4b]$
$=9a-2b-10a+4b$
$=(9a-10a)+(-2b+4b)$
$=-a+2b$
(4)解:原式$=5m+5n-10+12m-6n-2[\frac{1}{2}m+n-4]$
$=5m+5n-10+12m-6n-m-2n+8$
$=(5m+12m-m)+(5n-6n-2n)+(-10+8)$
$=16m-3n-2$
$=(-8a+5a)+(6+2)$
$=-3a+8$
(2)解:原式$=2x^{2}-2y^{2}+2-2x^{2}-2y^{2}+xy$
$=(2x^{2}-2x^{2})+(-2y^{2}-2y^{2})+xy+2$
$=-4y^{2}+xy+2$
(3)解:原式$=9a-2b-[8a-5b+2a+b]$
$=9a-2b-[10a-4b]$
$=9a-2b-10a+4b$
$=(9a-10a)+(-2b+4b)$
$=-a+2b$
(4)解:原式$=5m+5n-10+12m-6n-2[\frac{1}{2}m+n-4]$
$=5m+5n-10+12m-6n-m-2n+8$
$=(5m+12m-m)+(5n-6n-2n)+(-10+8)$
$=16m-3n-2$
解析:
(1)解:原式$=-8a+6+5a+2$
$=(-8a+5a)+(6+2)$
$=-3a+8$
(2)解:原式$=2x^{2}-2y^{2}+2-2x^{2}-2y^{2}+xy$
$=(2x^{2}-2x^{2})+(-2y^{2}-2y^{2})+xy+2$
$=-4y^{2}+xy+2$
(3)解:原式$=9a-2b-[8a-5b+2a+b]$
$=9a-2b-[10a-4b]$
$=9a-2b-10a+4b$
$=(9a-10a)+(-2b+4b)$
$=-a+2b$
(4)解:原式$=5m+5n-10+12m-6n-2[\frac{1}{2}m+n-4]$
$=5m+5n-10+12m-6n-m-2n+8$
$=(5m+12m-m)+(5n-6n-2n)+(-10+8)$
$=16m-3n-2$
$=(-8a+5a)+(6+2)$
$=-3a+8$
(2)解:原式$=2x^{2}-2y^{2}+2-2x^{2}-2y^{2}+xy$
$=(2x^{2}-2x^{2})+(-2y^{2}-2y^{2})+xy+2$
$=-4y^{2}+xy+2$
(3)解:原式$=9a-2b-[8a-5b+2a+b]$
$=9a-2b-[10a-4b]$
$=9a-2b-10a+4b$
$=(9a-10a)+(-2b+4b)$
$=-a+2b$
(4)解:原式$=5m+5n-10+12m-6n-2[\frac{1}{2}m+n-4]$
$=5m+5n-10+12m-6n-m-2n+8$
$=(5m+12m-m)+(5n-6n-2n)+(-10+8)$
$=16m-3n-2$