1.(教材 P48 例 4·变式)如图,在 Rt△ABC 中,∠ACB= 90°,CD 是斜边 AB 上的中线,若 CD= 2.5,则 AB 的长为(

A.2.5
B.4
C.5
D.6
C
).
A.2.5
B.4
C.5
D.6
答案:C [解析] 在Rt△ABC中,∠ACB = 90°,CD是斜边AB上的中线,
∴AB = 2CD = 2×2.5 = 5. 故选C. 归纳总结 本题主要考查直角三角形的性质,熟练掌握直角三角形斜边上的中线等于斜边的一半是解决本题的关键.
∴AB = 2CD = 2×2.5 = 5. 故选C. 归纳总结 本题主要考查直角三角形的性质,熟练掌握直角三角形斜边上的中线等于斜边的一半是解决本题的关键.
2. 如图,在△ABC 中,AB= AC,BE⊥AC,D 是 AB 的中点,且 DE= BE,则∠C 的度数是(

A.65°
B.70°
C.75°
D.80°
C
).
A.65°
B.70°
C.75°
D.80°
答案:C [解析]
∵BE⊥AC,
∴∠AEB = 90°.
∵D是AB的中点,
∴DE = $\frac{1}{2}$AB = BD = AD.
∵DE = BE,
∴DE = BE = BD,
∴△BDE为等边三角形,
∴∠ABE = 60°,
∴∠A = 90° - 60° = 30°.
∵AB = AC,
∴∠C = $\frac{1}{2}$×(180° - 30°) = 75°. 故选C.
∵BE⊥AC,
∴∠AEB = 90°.
∵D是AB的中点,
∴DE = $\frac{1}{2}$AB = BD = AD.
∵DE = BE,
∴DE = BE = BD,
∴△BDE为等边三角形,
∴∠ABE = 60°,
∴∠A = 90° - 60° = 30°.
∵AB = AC,
∴∠C = $\frac{1}{2}$×(180° - 30°) = 75°. 故选C.
3.(2025·徐州期中)如图,在等边三角形 ABC 中,AB= 6,BD 平分∠ABC,点 E 在 BC 的延长线上,且∠E= 30°,则 CE 的长为______.


3
答案:3 [解析]
∵△ABC是等边三角形,AB = 6,BD平分∠ABC,
∴AD = CD = $\frac{1}{2}$AC = $\frac{1}{2}$AB = 3,∠ACB = 60°.
∵∠E = 30°,
∴∠CDE = ∠ACB - ∠E = 30°,
∴∠E = ∠CDE = 30°,
∴CE = CD = 3.
∵△ABC是等边三角形,AB = 6,BD平分∠ABC,
∴AD = CD = $\frac{1}{2}$AC = $\frac{1}{2}$AB = 3,∠ACB = 60°.
∵∠E = 30°,
∴∠CDE = ∠ACB - ∠E = 30°,
∴∠E = ∠CDE = 30°,
∴CE = CD = 3.
4.(2025·江苏扬州江都区期末)如图,AB= AC= AD.
(1)若 AD//BC,
①若∠C= 80°,则∠D 的度数为
②猜想∠C 和∠D 的数量关系并证明.
(2)如果∠C= 2∠D,AD 与 BC 有什么位置关系?请证明你的结论.
(1)若 AD//BC,
①若∠C= 80°,则∠D 的度数为
40
°;②猜想∠C 和∠D 的数量关系并证明.
∠C = 2∠D,理由如下:∵AD//BC,∴∠D = ∠DBC.∵AB = AD,∴∠D = ∠ABD,∴∠ABD = ∠DBC = ∠D,∴∠ABC = 2∠D.∵AB = AC,∴∠C = ∠ABC = 2∠D.
(2)如果∠C= 2∠D,AD 与 BC 有什么位置关系?请证明你的结论.
AD//BC,理由如下:∵AB = AC,∴∠ABC = ∠C = 2∠D.∵AB = AD,∴∠ABD = ∠D.又∠ABC = ∠ABD + ∠DBC,∴∠DBC = ∠D,∴AD//BC.
答案:
(1)①40②∠C = 2∠D,理由如下:
∵AD//BC,
∴∠D = ∠DBC.
∵AB = AD,
∴∠D = ∠ABD,
∴∠ABD = ∠DBC = ∠D,
∴∠ABC = 2∠D.
∵AB = AC,
∴∠C = ∠ABC = 2∠D.
(2)AD//BC,理由如下:
∵AB = AC,
∴∠ABC = ∠C = 2∠D.
∵AB = AD,
∴∠ABD = ∠D.又∠ABC = ∠ABD + ∠DBC,
∴∠DBC = ∠D,
∴AD//BC.
(1)①40②∠C = 2∠D,理由如下:
∵AD//BC,
∴∠D = ∠DBC.
∵AB = AD,
∴∠D = ∠ABD,
∴∠ABD = ∠DBC = ∠D,
∴∠ABC = 2∠D.
∵AB = AC,
∴∠C = ∠ABC = 2∠D.
(2)AD//BC,理由如下:
∵AB = AC,
∴∠ABC = ∠C = 2∠D.
∵AB = AD,
∴∠ABD = ∠D.又∠ABC = ∠ABD + ∠DBC,
∴∠DBC = ∠D,
∴AD//BC.
5.(2024·镇江丹阳期末)如图,在△ABC 中,CD 是 AB 边上的高,BE 是 AC 边上的中线,且 BD= AE,已知∠A= 26°,则∠DFE 的度数是( ).

A.103°
B.104°
C.105°
D.106°

A.103°
B.104°
C.105°
D.106°
答案:
A [解析] 如图,连接DE.
∵CD是AB边上的高,
∴∠ADC = 90°.
∵BE是AC边上的中线,
∴E是AC的中点,
∴DE = $\frac{1}{2}$AC,
∴DE = AE,
∴∠ADE = ∠A = 26°.
∵BD = AE,
∴DE = BD,
∴∠DBE = ∠DEB.
∵∠ADE = ∠DBE + ∠DEB = 2∠DBE,
∴∠DBE = $\frac{1}{2}$×26° = 13°.
∵∠BDF = 180° - ∠ADC = 90°,
∴∠DFE = ∠BDF + ∠DBE = 90° + 13° = 103°.故选A. 思路引导 连接DE,由直角三角形斜边中线的性质得到DE = $\frac{1}{2}$AC,因此DE = AE,得到∠ADE = ∠A = 26°,而BD = AE,得到DE = BD,因此∠DBE = ∠DEB,由三角形外角的性质,求出∠DBE = 13°,于是得到∠DFE = ∠BDF + ∠DBE = 103°.
A [解析] 如图,连接DE.
∵CD是AB边上的高,
∴∠ADC = 90°.
∵BE是AC边上的中线,
∴E是AC的中点,

∴DE = $\frac{1}{2}$AC,
∴DE = AE,
∴∠ADE = ∠A = 26°.
∵BD = AE,
∴DE = BD,
∴∠DBE = ∠DEB.
∵∠ADE = ∠DBE + ∠DEB = 2∠DBE,
∴∠DBE = $\frac{1}{2}$×26° = 13°.
∵∠BDF = 180° - ∠ADC = 90°,
∴∠DFE = ∠BDF + ∠DBE = 90° + 13° = 103°.故选A. 思路引导 连接DE,由直角三角形斜边中线的性质得到DE = $\frac{1}{2}$AC,因此DE = AE,得到∠ADE = ∠A = 26°,而BD = AE,得到DE = BD,因此∠DBE = ∠DEB,由三角形外角的性质,求出∠DBE = 13°,于是得到∠DFE = ∠BDF + ∠DBE = 103°.
6. 如图,在△ABC 中,AB= AC,DE 垂直平分 AB,BE⊥AC,AF⊥BC,则∠EFC 的度数为(
A.35°
B.40°
C.45°
D.60°
C
).A.35°
B.40°
C.45°
D.60°
答案:C [解析]
∵DE垂直平分AB,
∴AE = BE.
∵BE⊥AC,
∴△ABE是等腰直角三角形,
∴∠BAC = ∠ABE = 45°.又AB = AC,
∴∠ABC = $\frac{1}{2}$(180° - ∠BAC) = $\frac{1}{2}$×(180° - 45°) = 67.5°,
∴∠CBE = ∠ABC - ∠ABE = 67.5° - 45° = 22.5°.
∵AB = AC,AF⊥BC,
∴BF = CF,
∴在Rt△BEC中,EF = BF,
∴∠BEF = ∠CBE = 22.5°,
∴∠EFC = ∠BEF + ∠CBE = 22.5° + 22.5° = 45°.故选C.
∵DE垂直平分AB,
∴AE = BE.
∵BE⊥AC,
∴△ABE是等腰直角三角形,
∴∠BAC = ∠ABE = 45°.又AB = AC,
∴∠ABC = $\frac{1}{2}$(180° - ∠BAC) = $\frac{1}{2}$×(180° - 45°) = 67.5°,
∴∠CBE = ∠ABC - ∠ABE = 67.5° - 45° = 22.5°.
∵AB = AC,AF⊥BC,
∴BF = CF,
∴在Rt△BEC中,EF = BF,
∴∠BEF = ∠CBE = 22.5°,
∴∠EFC = ∠BEF + ∠CBE = 22.5° + 22.5° = 45°.故选C.
7. 如图,在△ABC 中,AB= AC,AD 是△ABC 的角平分线,CE 是△ABC 的中线,连接 DE,若 AB= 6,则 DE=
3
.答案:3
解析:
∵AB=AC,AD是△ABC的角平分线,
∴AD是△ABC的中线,即D为BC中点。
∵CE是△ABC的中线,
∴E为AB中点。
∴DE是△ABC的中位线。
∵AB=6,AB=AC,
∴AC=6。
∴DE=$\frac{1}{2}$AC=$\frac{1}{2}×6$=3。
3
8.(2025·泰州姜堰区期中)如图,在△ABC 中,ED//BC,∠ABC 和∠ACB 的平分线分别交 ED 于点 G,F,若 BE= 3,CD= 4,ED= 6,则 FG 的长为______
1
.答案:1 [解析]
∵ED//BC,
∴∠EGB = ∠GBC,∠DFC = ∠FCB.
∵∠GBC = ∠GBE,∠FCB = ∠FCD,
∴∠EGB = ∠EBG,∠DCF = ∠DFC,
∴BE = EG,CD = DF.
∵BE = 3,CD = 4,ED = 6,
∴EB + CD = EG + DF = EF + FG + FG + DG = ED + FG,即3 + 4 = 6 + FG,
∴FG = 1.
∵ED//BC,
∴∠EGB = ∠GBC,∠DFC = ∠FCB.
∵∠GBC = ∠GBE,∠FCB = ∠FCD,
∴∠EGB = ∠EBG,∠DCF = ∠DFC,
∴BE = EG,CD = DF.
∵BE = 3,CD = 4,ED = 6,
∴EB + CD = EG + DF = EF + FG + FG + DG = ED + FG,即3 + 4 = 6 + FG,
∴FG = 1.
9.(2025·镇江丹徒区期中)如图,在△ABC 中,AD 为∠CAB 的平分线,BE⊥AD 于点 E,EF⊥AB 于点 F,∠DBE= ∠C= 15°,AB= 8,则 AF=
2
.答案:2 [解析]
∵∠DBE = 15°,∠BED = 90°,
∴∠BDA = 75°.
∵∠BDA = ∠DAC + ∠C,∠C = 15°,
∴∠DAC = 60°.
∵AD为∠CAB的平分线,
∴∠BAD = ∠DAC = 60°.
∵EF⊥AB于点F,BE⊥AD于点E,
∴∠FEA = ∠ABE = 30°.
∵AB = 8,
∴AE = 4,
∴AF = $\frac{1}{2}$AE = 2.
∵∠DBE = 15°,∠BED = 90°,
∴∠BDA = 75°.
∵∠BDA = ∠DAC + ∠C,∠C = 15°,
∴∠DAC = 60°.
∵AD为∠CAB的平分线,
∴∠BAD = ∠DAC = 60°.
∵EF⊥AB于点F,BE⊥AD于点E,
∴∠FEA = ∠ABE = 30°.
∵AB = 8,
∴AE = 4,
∴AF = $\frac{1}{2}$AE = 2.