2. 如图,在同一平面内,$\angle AOB= 40^{\circ}$,从顶点$O画一条射线OP$,若$\angle POB= 10^{\circ}$,则$\angle AOP$的度数为(

A.$10^{\circ}$
B.$30^{\circ}$
C.$20^{\circ}或50^{\circ}$
D.$30^{\circ}或50^{\circ}$
D
)
A.$10^{\circ}$
B.$30^{\circ}$
C.$20^{\circ}或50^{\circ}$
D.$30^{\circ}或50^{\circ}$
答案:D
解析:
情况一:射线OP在∠AOB内部,
∠AOP=∠AOB - ∠POB=40° - 10°=30°;
情况二:射线OP在∠AOB外部,
∠AOP=∠AOB + ∠POB=40° + 10°=50°;
∠AOP的度数为30°或50°。
D
∠AOP=∠AOB - ∠POB=40° - 10°=30°;
情况二:射线OP在∠AOB外部,
∠AOP=∠AOB + ∠POB=40° + 10°=50°;
∠AOP的度数为30°或50°。
D
3. 阅读下面的题目及解答过程,并填空:
如图,$O是直线AB$上的一点,过$O点作射线OC$,$OD$,$OE$,$OD$平分$\angle AOC$,$OE$平分$\angle BOC$.
(1)如果$\angle AOC= 120^{\circ}$,求$\angle DOE$的度数.
解:$\because OD是\angle AOC$的平分线,$\angle AOC= 120^{\circ}$,
$\therefore \angle DOC= \frac{1}{2}$
$\because OE是\angle BOC$的平分线,$\angle BOC= 180^{\circ}-\angle AOC= 180^{\circ}-120^{\circ}=60^{\circ}$,
同理,$\angle COE= \frac{1}{2}$
$\therefore \angle DOE= $
(2)如果$\angle AOC= n^{\circ}$,则$\angle DOE= $

如图,$O是直线AB$上的一点,过$O点作射线OC$,$OD$,$OE$,$OD$平分$\angle AOC$,$OE$平分$\angle BOC$.
(1)如果$\angle AOC= 120^{\circ}$,求$\angle DOE$的度数.
解:$\because OD是\angle AOC$的平分线,$\angle AOC= 120^{\circ}$,
$\therefore \angle DOC= \frac{1}{2}$
∠AOC
$=$60
$^{\circ}$(角平分线的定义
).$\because OE是\angle BOC$的平分线,$\angle BOC= 180^{\circ}-\angle AOC= 180^{\circ}-120^{\circ}=60^{\circ}$,
同理,$\angle COE= \frac{1}{2}$
∠BOC
$=$30
$^{\circ}$(角平分线的定义
).$\therefore \angle DOE= $
∠DOC
$+$∠COE
$=$90
$^{\circ}$.(2)如果$\angle AOC= n^{\circ}$,则$\angle DOE= $
90
$^{\circ}$.
答案:(1)∠AOC;60;角平分线的定义;∠BOC;30;角平分线的定义;∠DOC;∠COE;90. (2)90.
4. 如图,$OD是\angle AOC$的平分线,$\angle AOD= 40^{\circ}$,$\angle BOD= 70^{\circ}$,求$\angle BOC$的度数.


答案:30°
解析:
∵OD是∠AOC的平分线,∠AOD=40°,
∴∠COD=∠AOD=40°,
∵∠BOD=70°,
∴∠BOC=∠BOD - ∠COD=70° - 40°=30°.
答:∠BOC的度数为30°.
5. 已知$\angle AOB= 70^{\circ}$,$\angle BOC= 40^{\circ}$,$OD是\angle AOC$的平分线,求$\angle BOD$的度数.
答案:15°或55°
解析:
情况一:OC在∠AOB内部
∠AOC = ∠AOB - ∠BOC = 70° - 40° = 30°
OD平分∠AOC,∠COD = $\frac{1}{2}$∠AOC = 15°
∠BOD = ∠BOC + ∠COD = 40° + 15° = 55°
情况二:OC在∠AOB外部
∠AOC = ∠AOB + ∠BOC = 70° + 40° = 110°
OD平分∠AOC,∠COD = $\frac{1}{2}$∠AOC = 55°
∠BOD = ∠COD - ∠BOC = 55° - 40° = 15°
∠BOD的度数为15°或55°
∠AOC = ∠AOB - ∠BOC = 70° - 40° = 30°
OD平分∠AOC,∠COD = $\frac{1}{2}$∠AOC = 15°
∠BOD = ∠BOC + ∠COD = 40° + 15° = 55°
情况二:OC在∠AOB外部
∠AOC = ∠AOB + ∠BOC = 70° + 40° = 110°
OD平分∠AOC,∠COD = $\frac{1}{2}$∠AOC = 55°
∠BOD = ∠COD - ∠BOC = 55° - 40° = 15°
∠BOD的度数为15°或55°
给出如下定义:如果$\angle AOC+\angle BOC= 90^{\circ}$,且$\angle AOC= k\angle BOC$($k$为正整数),那么称$\angle AOC是\angle BOC$的“倍锐角”.
(1)下列三个条件中,能判断$\angle AOC是\angle BOC$的“倍锐角”的是______(填写序号);
①$\angle BOC= 15^{\circ}$;②$\angle AOC= 70^{\circ}$;③$OC是\angle AOB$的角平分线;
(2)如图①,当$\angle BOC= 30^{\circ}$时,在图中画出$\angle BOC$的一个“倍锐角”$\angle AOC$.
(3)如图②,当$\angle BOC= 60^{\circ}$时,若将射线$OB绕点O$旋转,每次旋转$10^{\circ}$,在旋转过程中可得它的“倍锐角”$\angle AOC= $______.
(4)当$\angle BOC= m^{\circ}$且存在它的“倍锐角”$\angle AOC$时,则$\angle AOB= $______.

(1)下列三个条件中,能判断$\angle AOC是\angle BOC$的“倍锐角”的是______(填写序号);
①$\angle BOC= 15^{\circ}$;②$\angle AOC= 70^{\circ}$;③$OC是\angle AOB$的角平分线;
(2)如图①,当$\angle BOC= 30^{\circ}$时,在图中画出$\angle BOC$的一个“倍锐角”$\angle AOC$.
(3)如图②,当$\angle BOC= 60^{\circ}$时,若将射线$OB绕点O$旋转,每次旋转$10^{\circ}$,在旋转过程中可得它的“倍锐角”$\angle AOC= $______.
(4)当$\angle BOC= m^{\circ}$且存在它的“倍锐角”$\angle AOC$时,则$\angle AOB= $______.

答案:
(1)①③. (2)∠BOC=30°,若∠AOC+∠BOC=90°,那么∠AOC=60°=2∠BOC,有以下两种情况:
(3)80°或60°. (4)90°或(90-2m)°.
(1)①③. (2)∠BOC=30°,若∠AOC+∠BOC=90°,那么∠AOC=60°=2∠BOC,有以下两种情况:

