14. 如果关于$x的分式方程\frac{a}{x + 1} - 3 = \frac{1 - x}{x + 1}$有负分数解,且关于$x的不等式组\begin{cases}2(a - x) \geq -x - 4, \\ \frac{3x + 4}{2} < x + 1\end{cases} 的解集为x < -2$,那么符合条件的所有整数$a$的积等于
9
.答案:9
解析:
解分式方程$\frac{a}{x + 1} - 3 = \frac{1 - x}{x + 1}$,方程两边同乘$x + 1$得:$a - 3(x + 1) = 1 - x$,解得$x = \frac{a - 4}{2}$。
因为分式方程有负分数解,所以$\frac{a - 4}{2} < 0$且$\frac{a - 4}{2} \neq -1$,即$a < 4$且$a \neq 2$,且$\frac{a - 4}{2}$为分数,所以$a$为奇数。
解不等式组$\begin{cases}2(a - x) \geq -x - 4 \\ \frac{3x + 4}{2} < x + 1\end{cases}$,解第一个不等式得$x \leq 2a + 4$,解第二个不等式得$x < -2$。因为不等式组解集为$x < -2$,所以$2a + 4 \geq -2$,即$a \geq -3$。
综上,整数$a$的值为$-3$,$-1$,$1$,$3$,积为$(-3)×(-1)×1×3 = 9$。
9
因为分式方程有负分数解,所以$\frac{a - 4}{2} < 0$且$\frac{a - 4}{2} \neq -1$,即$a < 4$且$a \neq 2$,且$\frac{a - 4}{2}$为分数,所以$a$为奇数。
解不等式组$\begin{cases}2(a - x) \geq -x - 4 \\ \frac{3x + 4}{2} < x + 1\end{cases}$,解第一个不等式得$x \leq 2a + 4$,解第二个不等式得$x < -2$。因为不等式组解集为$x < -2$,所以$2a + 4 \geq -2$,即$a \geq -3$。
综上,整数$a$的值为$-3$,$-1$,$1$,$3$,积为$(-3)×(-1)×1×3 = 9$。
9
15. (12 分)计算:
(1)$2025^0 - 2^2 + (\frac{1}{3})^{-1}$;
(2)$(\frac{y}{6x^2})^2 ÷ (-\frac{y^2}{4x})^2$;
(3)$\frac{6}{x^2 - 9} + \frac{1}{x + 3}$.
(1)$2025^0 - 2^2 + (\frac{1}{3})^{-1}$;
(2)$(\frac{y}{6x^2})^2 ÷ (-\frac{y^2}{4x})^2$;
(3)$\frac{6}{x^2 - 9} + \frac{1}{x + 3}$.
答案:(1)0;(2)$\dfrac{4}{9x^{2}y^{2}}$;(3)$\dfrac{1}{x-3}$
解析:
(1)$2025^0 - 2^2 + (\frac{1}{3})^{-1} = 1 - 4 + 3 = 0$;
(2)$(\frac{y}{6x^2})^2 ÷ (-\frac{y^2}{4x})^2 = \frac{y^2}{36x^4} ÷ \frac{y^4}{16x^2} = \frac{y^2}{36x^4} \cdot \frac{16x^2}{y^4} = \frac{4}{9x^2y^2}$;
(3)$\frac{6}{x^2 - 9} + \frac{1}{x + 3} = \frac{6}{(x + 3)(x - 3)} + \frac{x - 3}{(x + 3)(x - 3)} = \frac{6 + x - 3}{(x + 3)(x - 3)} = \frac{x + 3}{(x + 3)(x - 3)} = \frac{1}{x - 3}$。
(2)$(\frac{y}{6x^2})^2 ÷ (-\frac{y^2}{4x})^2 = \frac{y^2}{36x^4} ÷ \frac{y^4}{16x^2} = \frac{y^2}{36x^4} \cdot \frac{16x^2}{y^4} = \frac{4}{9x^2y^2}$;
(3)$\frac{6}{x^2 - 9} + \frac{1}{x + 3} = \frac{6}{(x + 3)(x - 3)} + \frac{x - 3}{(x + 3)(x - 3)} = \frac{6 + x - 3}{(x + 3)(x - 3)} = \frac{x + 3}{(x + 3)(x - 3)} = \frac{1}{x - 3}$。
16. (6 分)化简:
$\frac{m^2}{m^2 + 2m + 1} ÷ (1 - \frac{1}{m + 1})$.
$\frac{m^2}{m^2 + 2m + 1} ÷ (1 - \frac{1}{m + 1})$.
答案:$\dfrac{m}{m+1}$
解析:
$\begin{aligned}&\frac{m^2}{m^2 + 2m + 1} ÷ (1 - \frac{1}{m + 1})\\=&\frac{m^2}{(m + 1)^2} ÷ (\frac{m + 1}{m + 1} - \frac{1}{m + 1})\\=&\frac{m^2}{(m + 1)^2} ÷ \frac{m}{m + 1}\\=&\frac{m^2}{(m + 1)^2} × \frac{m + 1}{m}\\=&\frac{m}{m + 1}\end{aligned}$
17. (8 分)解分式方程:
(1)$\frac{3 - x}{x - 4} - \frac{1}{4 - x} = 1$;
(2)$\frac{3}{x - 2} - \frac{8}{x^2 - 4} = \frac{1}{x + 2}$.
(1)$\frac{3 - x}{x - 4} - \frac{1}{4 - x} = 1$;
(2)$\frac{3}{x - 2} - \frac{8}{x^2 - 4} = \frac{1}{x + 2}$.
答案:(1)去分母,得$3-x+1=x-4$,解得$x=4$. 检验:当$x=4$时,$x-4=0$,$\therefore x=4$不是原分式方程的解,分式方程无解. (2)$x=0$
解析:
(1)解:$\frac{3 - x}{x - 4} - \frac{1}{4 - x} = 1$
去分母,得$3 - x + 1 = x - 4$
移项、合并同类项,得$-2x = -8$
解得$x = 4$
检验:当$x = 4$时,$x - 4 = 0$
$\therefore x = 4$不是原分式方程的解,原分式方程无解
(2)解:$\frac{3}{x - 2} - \frac{8}{x^2 - 4} = \frac{1}{x + 2}$
去分母,得$3(x + 2) - 8 = x - 2$
去括号,得$3x + 6 - 8 = x - 2$
移项、合并同类项,得$2x = 0$
解得$x = 0$
检验:当$x = 0$时,$(x - 2)(x + 2) = -4 \neq 0$
$\therefore x = 0$是原分式方程的解
去分母,得$3 - x + 1 = x - 4$
移项、合并同类项,得$-2x = -8$
解得$x = 4$
检验:当$x = 4$时,$x - 4 = 0$
$\therefore x = 4$不是原分式方程的解,原分式方程无解
(2)解:$\frac{3}{x - 2} - \frac{8}{x^2 - 4} = \frac{1}{x + 2}$
去分母,得$3(x + 2) - 8 = x - 2$
去括号,得$3x + 6 - 8 = x - 2$
移项、合并同类项,得$2x = 0$
解得$x = 0$
检验:当$x = 0$时,$(x - 2)(x + 2) = -4 \neq 0$
$\therefore x = 0$是原分式方程的解
18. (6 分)化简:$(1 - \frac{5}{x + 2}) ÷ \frac{x^2 - 9}{x + 3}$.
答案:原式$=\dfrac{x-3}{x+2}÷ \dfrac{(x+3)(x-3)}{x+3}=\dfrac{x-3}{x+2}\cdot \dfrac{x+3}{(x+3)(x-3)}=\dfrac{1}{x+2}$
解析:
原式$=\left(\dfrac{x+2}{x+2}-\dfrac{5}{x+2}\right)÷ \dfrac{x^2 - 9}{x + 3}$
$=\dfrac{x+2-5}{x+2}÷ \dfrac{(x+3)(x-3)}{x+3}$
$=\dfrac{x-3}{x+2}\cdot \dfrac{x+3}{(x+3)(x-3)}$
$=\dfrac{1}{x+2}$
$=\dfrac{x+2-5}{x+2}÷ \dfrac{(x+3)(x-3)}{x+3}$
$=\dfrac{x-3}{x+2}\cdot \dfrac{x+3}{(x+3)(x-3)}$
$=\dfrac{1}{x+2}$
19. (8 分)先化简:$(\frac{3}{a + 1} - a + 1) ÷ \frac{a^2 - 4a + 4}{a + 1}$,再从$0$,$-1$,$2$中选一个合适的数,作为$a$的值代入求值.
答案:原式$=\left( \dfrac{3}{a+1}-\dfrac{a^{2}-1}{a+1}\right)× \dfrac{a+1}{(a-2)^{2}}=\dfrac{-(a+2)(a-2)}{a+1}× \dfrac{a+1}{(a-2)^{2}}=\dfrac{a+2}{2-a}$;$\because a\neq -1$,$a\neq 2$,$\therefore a=0$. 当$a=0$时,原式$=\dfrac{2}{2}=1$