已知$3x + 5y - 1 = 0$,求$8^{x}\cdot 32^{y}$的值.
答案:2.
解析:
因为$3x + 5y - 1 = 0$,所以$3x + 5y = 1$。
$8^{x} \cdot 32^{y} = (2^{3})^{x} \cdot (2^{5})^{y} = 2^{3x} \cdot 2^{5y} = 2^{3x + 5y}$。
将$3x + 5y = 1$代入,得$2^{1} = 2$。
2
$8^{x} \cdot 32^{y} = (2^{3})^{x} \cdot (2^{5})^{y} = 2^{3x} \cdot 2^{5y} = 2^{3x + 5y}$。
将$3x + 5y = 1$代入,得$2^{1} = 2$。
2
1. 计算 $2x^{2} \cdot (-3x^{3})$ 的结果是 (
A.$-6x^{5}$
B.$6x^{5}$
C.$-2x^{6}$
D.$2x^{6}$
A
)A.$-6x^{5}$
B.$6x^{5}$
C.$-2x^{6}$
D.$2x^{6}$
答案:A
解析:
$2x^{2} \cdot (-3x^{3}) = [2 × (-3)] \cdot (x^{2} \cdot x^{3}) = -6x^{5}$,结果为A选项。
2. 下列计算正确的是 (
A.$a^{2} \cdot 2a^{4} = 2a^{8}$
B.$a(a + 1) = a^{2} + 1$
C.$(a^{2})^{3} \cdot a = a^{7}$
D.$(-3a)^{3} = -9a^{3}$
C
)A.$a^{2} \cdot 2a^{4} = 2a^{8}$
B.$a(a + 1) = a^{2} + 1$
C.$(a^{2})^{3} \cdot a = a^{7}$
D.$(-3a)^{3} = -9a^{3}$
答案:C
解析:
A.$a^{2} \cdot 2a^{4} = 2a^{2+4}=2a^{6}\neq2a^{8}$
B.$a(a + 1) = a^{2} + a\neq a^{2} + 1$
C.$(a^{2})^{3} \cdot a = a^{6}\cdot a=a^{7}$
D.$(-3a)^{3} = (-3)^{3}a^{3}=-27a^{3}\neq -9a^{3}$
结论:C
B.$a(a + 1) = a^{2} + a\neq a^{2} + 1$
C.$(a^{2})^{3} \cdot a = a^{6}\cdot a=a^{7}$
D.$(-3a)^{3} = (-3)^{3}a^{3}=-27a^{3}\neq -9a^{3}$
结论:C
3. 计算:
(1) $a^{3} \cdot a^{5} = $
(3) $(3ab^{2})^{2} \cdot a^{4} = $
(5) $10 × 10^{2} × 10^{4} = $
(1) $a^{3} \cdot a^{5} = $
$a^{8}$
; (2) $(a^{3})^{2} = $$a^{6}$
;(3) $(3ab^{2})^{2} \cdot a^{4} = $
$9a^{6}b^{4}$
; (4) $(2x)^{3} \cdot (-3xy^{2}) = $$-24x^{3}y^{2}$
;(5) $10 × 10^{2} × 10^{4} = $
$10^{6}$
; (6) $(-3ab)(-a^{2}c)^{2}(c^{2})^{3} = $$-3a^{7}b^{9}$
.答案:
(1)$a^{8}$;
(2)$a^{6}$;
(3)$9a^{6}b^{4}$;
(4)$-24x^{3}y^{2}$;
(5)$10^{6}$;
(6)$-3a^{7}b^{9}$
(1)$a^{8}$;
(2)$a^{6}$;
(3)$9a^{6}b^{4}$;
(4)$-24x^{3}y^{2}$;
(5)$10^{6}$;
(6)$-3a^{7}b^{9}$
4. 已知一个长方体的长为 $3a$ cm,宽为 $b$ cm,高为 $ab$ cm,则该长方体的体积为
$3a^{2}b^{2}\ cm^{3}$
.答案:$3a^{2}b^{2}\ cm^{3}$
解析:
长方体体积 = 长×宽×高 = $3a × b × ab = 3a^{2}b^{2}\ cm^3$
问题 计算:
(1) $3x^{2}y \cdot (-2xy^{3})$; (2) $(-5a^{2}b^{3}) \cdot (-4b^{2}c)$;
(3) $3a^{3}b \cdot 2ab^{2} \cdot (-5a^{2}b^{2})$.
名师指导
单项式乘法的基本题型,直接按单项式乘法法则计算.
解题示范 (学生在教师指导下,独立完成)
解:
(1) $3x^{2}y \cdot (-2xy^{3})$; (2) $(-5a^{2}b^{3}) \cdot (-4b^{2}c)$;
(3) $3a^{3}b \cdot 2ab^{2} \cdot (-5a^{2}b^{2})$.
名师指导
单项式乘法的基本题型,直接按单项式乘法法则计算.
解题示范 (学生在教师指导下,独立完成)
解:
答案:(1)
$3x^{2}y\cdot(-2xy^{3})$
$=[3×(-2)]\cdot(x^{2}\cdot x)\cdot(y\cdot y^{3})$
$=-6x^{2 + 1}y^{1+3}$
$=-6x^{3}y^{4}$
(2)
$(-5a^{2}b^{3})\cdot(-4b^{2}c)$
$=[(-5)×(-4)]\cdot(a^{2})\cdot(b^{3}\cdot b^{2})\cdot c$
$=20a^{2}b^{3 + 2}c$
$=20a^{2}b^{5}c$
(3)
$3a^{3}b\cdot2ab^{2}\cdot(-5a^{2}b^{2})$
$=[3×2×(-5)]\cdot(a^{3}\cdot a\cdot a^{2})\cdot(b\cdot b^{2}\cdot b^{2})$
$=-30a^{3 + 1+2}b^{1 + 2+2}$
$=-30a^{6}b^{5}$
$3x^{2}y\cdot(-2xy^{3})$
$=[3×(-2)]\cdot(x^{2}\cdot x)\cdot(y\cdot y^{3})$
$=-6x^{2 + 1}y^{1+3}$
$=-6x^{3}y^{4}$
(2)
$(-5a^{2}b^{3})\cdot(-4b^{2}c)$
$=[(-5)×(-4)]\cdot(a^{2})\cdot(b^{3}\cdot b^{2})\cdot c$
$=20a^{2}b^{3 + 2}c$
$=20a^{2}b^{5}c$
(3)
$3a^{3}b\cdot2ab^{2}\cdot(-5a^{2}b^{2})$
$=[3×2×(-5)]\cdot(a^{3}\cdot a\cdot a^{2})\cdot(b\cdot b^{2}\cdot b^{2})$
$=-30a^{3 + 1+2}b^{1 + 2+2}$
$=-30a^{6}b^{5}$