3. 若$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$,且$2x + 3y - z = 18$,求$x$、$y$、$z$的值.
答案:解:设$\frac {x}{2}=\frac {y}{3}=\frac {z}{4}=a$
∴x=2a,y=3a,z=4a
∵2x+3y-z=18
∴2×(2a)+3×(3a)-4a=18
∴a=2
∴x=4,y=6,z=8
∴x=2a,y=3a,z=4a
∵2x+3y-z=18
∴2×(2a)+3×(3a)-4a=18
∴a=2
∴x=4,y=6,z=8
4. 如图,在$\triangle ABC$中,$AB = 12\ cm$,$AE = 6\ cm$,$EC = 4\ cm$,且$\frac{AD}{BD}=\frac{AE}{EC}$.
(1) 求$AD$的长;
(2) 求证:$\frac{BD}{AB}=\frac{EC}{AC}$.

(1) 求$AD$的长;
(2) 求证:$\frac{BD}{AB}=\frac{EC}{AC}$.
答案: (1)解:设$AD=x\ \mathrm {cm},$则$BD=AB-AD=(12-x)\ \mathrm {cm}$
∵$\frac {AD}{BD}=\frac {AE}{EC}$
∴$\frac {x}{12-x}=\frac {6}{4}$
∴x= 7.2
∴$AD=7.2\ \mathrm {cm}$
(2)证明:∵$\frac {AD}{BD}=\frac {AE}{EC}$
∴$\frac {AD+BD}{BD}=\frac {AE+EC}{EC}$
∴$\frac {AB}{BD}=\frac {AC}{EC}$
∴$\frac {BD}{AB}=\frac {EC}{AC}$
∵$\frac {AD}{BD}=\frac {AE}{EC}$
∴$\frac {x}{12-x}=\frac {6}{4}$
∴x= 7.2
∴$AD=7.2\ \mathrm {cm}$
(2)证明:∵$\frac {AD}{BD}=\frac {AE}{EC}$
∴$\frac {AD+BD}{BD}=\frac {AE+EC}{EC}$
∴$\frac {AB}{BD}=\frac {AC}{EC}$
∴$\frac {BD}{AB}=\frac {EC}{AC}$