零五网 全部参考答案 课课练答案 2026年课课练江苏九年级数学下册苏科版 第57页解析答案
3. 两个等腰直角三角形的周长分别为 5 cm、3 cm,它们的面积之比为
25:9
.
答案:​​25:9​​
4. 两个相似三角形对应高之比为 3:5,这两个三角形的对应角平分线之比为
3:5
.

答案:​​3:5​​
三、解答题
5. 如图,在四边形 ABCD 中,$\frac{BC}{CD}=\frac{3}{2}$,AC 平分∠BAD,∠ACB=∠ADC=90°,CF 和 DE 分别是△ABC、△ACD 的中线.求$\frac{CF}{DE}$的值.


答案:​​解:由∠BAC=∠CAD,∠ACB=∠ADC= 90°​​
​​得△ABC∽△ACD ​​
​​所以$\frac {AB}{AC}=\frac {BC}{CD}=\frac {3}{2}​​$
​​因为CF和DE分别是△ABC、ACD斜边上的中线​​
​​所以$CF=\frac {1}{2}AB,$$DE=\frac {1}{2}AC,$​​
​​所以$\frac {CF}{DE}=\frac {AB}{BC}=\frac {3}{2}​​$
6. 如图,把△ABC 沿边 AB 平移到△A'B'C'的位置,它们重叠区域(即图中的阴影部分)的面积是△ABC 的面积的一半.若 AB=$\sqrt{2}$,求此三角形移动的距离AA'的长.

答案:​​解:因为∠C'A'B= ∠CAB,∠C'BA'=∠CBA​​
​​所以△ABC与阴影部分的三角形相似​​
​​因为阴影部分面积是△ABC的面积的一半,​​
​​所以AB:$ A'B=\sqrt{2}$: 1​​
​​所以A'B= 1,​​
​​所以$AA' =\sqrt{2}-1​$
7. 如图是一块直角三角形板材,其中,∠C=90°,AC=8 cm,BC=6 cm.如何从这块板材上裁剪下一块面积最大的正方形? 请画出你的设计图,并求出这块正方形的边长.


答案:
​​解:①如图①, EF//AB​​
​​所以$\frac {EF}{AB}=\frac {CI}{CD}​​$
$​​AB=\sqrt{8²+6²}= 10,$$ CD=\frac {8×6}{10}= 4.8​​$
​​设正方形边长为:$x\ \mathrm {cm} ,$​​
$​​\frac {x}{10}=\frac {4.8}{4}-8,$​​
​​解得$x= \frac {120}{37}​​$
​​②如图②,可得△AED∽△DFB∽△ACB​​
​​设正方形边长为$n\ \mathrm {cm}​​$
​​则$AD=\frac {5}{3}n,$$BD=\frac {5}{4}n​​$
$​​AB=\frac {5}{3}n+\frac {5}{4}n=10​​$
​​解得$n=\frac {24}{7}​​$
$​​\frac {120}{37}≈3.2;$$\frac {24}{7}≈3.4​​$
​​所以$\frac {24}{7}>\frac {120}{37}​​$
​​所以图②中正方形即为所求,边长为$\frac {24}{7}​​$
上一页 下一页