1. 如图,在$\triangle ABC$中,$\angle C = 90^{\circ}$,$D$是$BC$上的一点,$DE ⊥ AB$,垂足为$E$.
(1) $\tan B = \frac{(\ \ \ \ \ )}{(\ \ \ \ \ )} = \frac{(\ \ \ \ \ )}{(\ \ \ \ \ )}$;(2) $\tan \angle BDE = \frac{(\ \ \ \ \ )}{(\ \ \ \ \ )} = \frac{(\ \ \ \ \ )}{(\ \ \ \ \ )}$.

(1) $\tan B = \frac{(\ \ \ \ \ )}{(\ \ \ \ \ )} = \frac{(\ \ \ \ \ )}{(\ \ \ \ \ )}$;(2) $\tan \angle BDE = \frac{(\ \ \ \ \ )}{(\ \ \ \ \ )} = \frac{(\ \ \ \ \ )}{(\ \ \ \ \ )}$.
答案:(1)$\frac {AC}{BC}$ $\frac {DE}{BE}$
(2)$\frac {BE}{DE}$ $\frac {BC}{AC}$
(2)$\frac {BE}{DE}$ $\frac {BC}{AC}$
2. 如图,某楼梯的每个台阶宽$AC$为$30\ \mathrm{cm}$,高$BC$为$15\ \mathrm{cm}$,则该楼梯倾斜角的正切值等于

$\frac{1}{2}$
.答案:$\frac {1}{2}$
3. 在平面直角坐标系中,已知函数$y = - 2x + 6$的图像与$x$轴、$y$轴分别交于$A$、$B$两点,$O$是坐标原点,则$\tan \angle BAO =$
2
.答案:2
4. 在$\triangle ABC$中,$\angle C = 90^{\circ}$,那么$\tan A$和$\tan B$的关系是(
A.互为相反数
B.互为倒数
C.相等
D.互余
B
).A.互为相反数
B.互为倒数
C.相等
D.互余
答案:B
5. 锐角$\alpha$增大时,$\tan \alpha$的值(
A.不变
B.增大
C.减小
D.增减无法确定
B
).A.不变
B.增大
C.减小
D.增减无法确定
答案:B
6. 在$\triangle ABC$中,$\angle C = 90^{\circ}$. 若$2AB = 3BC$,则$\tan A$等于(
A.$\frac{2}{3}$
B.$\frac{3}{2}$
C.$\frac{2\sqrt{5}}{5}$
D.$\frac{\sqrt{5}}{2}$
C
).A.$\frac{2}{3}$
B.$\frac{3}{2}$
C.$\frac{2\sqrt{5}}{5}$
D.$\frac{\sqrt{5}}{2}$
答案:C
7. 如图,在$\triangle ABC$中,$\angle C = 90^{\circ}$,$AD$是中线,$\angle ABC = \alpha$,$\angle ADC = \beta$. 下列结论中,正确的是(

A.$\beta = 2\alpha$
B.$\tan \beta = 2\tan \alpha$
C.$\tan \beta = \tan 2\alpha$
D.$\tan \beta = \tan \alpha$
B
).A.$\beta = 2\alpha$
B.$\tan \beta = 2\tan \alpha$
C.$\tan \beta = \tan 2\alpha$
D.$\tan \beta = \tan \alpha$
答案:B