1. 在$\triangle ABC$中,$\angle C = 90^{\circ}$,$AC = 6\ \mathrm{cm}$,$\triangle ABC$的面积为$24\ \mathrm{cm}^2$,则$\sin A =$
$\frac{4}{5}$
.答案:$\frac {4}{5}$
2. 等腰三角形底边长为$10\ \mathrm{cm}$,周长为$36\ \mathrm{cm}$,则一底角的正切值为
$\frac{12}{5}$
.答案:$\frac {12}{5}$
3. 在锐角三角形$ABC$中,$\angle B = 45^{\circ}$,$\cos C = \frac{3}{5}$,$AC = 5a$,则$\triangle ABC$的面积为(
A.$10a^2$
B.$12a^2$
C.$13a^2$
D.$14a^2$
D
).A.$10a^2$
B.$12a^2$
C.$13a^2$
D.$14a^2$
答案:D
4. 在$\triangle ABC$中,$\angle C = 90^{\circ}$. 根据下列条件解直角三角形:
(1) $b = 2\sqrt{3}$,$c = 4$;
(2) $b = 7$,$\angle A = 45^{\circ}$;
(3) $a = 24$,$b = 8\sqrt{3}$.
(1) $b = 2\sqrt{3}$,$c = 4$;
(2) $b = 7$,$\angle A = 45^{\circ}$;
(3) $a = 24$,$b = 8\sqrt{3}$.
答案:解:$(1)a=\sqrt {c^2-b^2}=2$
$sinA=\frac a{c}=\frac 24=\frac 12$
∴∠A=30°,∠B=90°-∠A=60°
(2)∠B=∠A=45°
∴a=b=7,$c=\frac {a}{sin_{45}°}=\frac 7{\frac {\sqrt 2}2}=7\sqrt 2$
$(3)c=\sqrt {a^2+b^2}=16\sqrt 3$
$sinB=\frac b{c}=\frac {8\sqrt 3}{16\sqrt 3}=\frac 12$
∴∠B=30°,∠A=90°-∠B=60°
$sinA=\frac a{c}=\frac 24=\frac 12$
∴∠A=30°,∠B=90°-∠A=60°
(2)∠B=∠A=45°
∴a=b=7,$c=\frac {a}{sin_{45}°}=\frac 7{\frac {\sqrt 2}2}=7\sqrt 2$
$(3)c=\sqrt {a^2+b^2}=16\sqrt 3$
$sinB=\frac b{c}=\frac {8\sqrt 3}{16\sqrt 3}=\frac 12$
∴∠B=30°,∠A=90°-∠B=60°
5. 如图,在$\triangle ABC$中,$\angle ACB = 90^{\circ}$,$AB = 6$,$CD ⊥ AB$,垂足为$D$,$AD = 2$. 求$\sin A$和$\tan B$的值.

答案:解:∵∠ACB=90°,CD⊥AB
∴∠ACB=∠ADC=90°
∵∠BAC=∠CAD
∴△ABC∽△ACD
∴$\frac {AB}{AC}=\frac {AC}{AD},$即$AC^2=AB · AD$
∵AB=6,AD=2
∴$AC=2\sqrt 3$
在Rt△ABC中,∵$AC=2\sqrt 3,$AB=6
∴$BC=\sqrt {AB^2-AC^2}=2\sqrt 6$
∴$sinA=\frac {BC}{AB}=\frac {2\sqrt 6}6=\frac {\sqrt 6}3,$$tanB=\frac {AC}{BC}=\frac {2\sqrt 3}{2\sqrt 6}=\frac {\sqrt 2}2$
∴∠ACB=∠ADC=90°
∵∠BAC=∠CAD
∴△ABC∽△ACD
∴$\frac {AB}{AC}=\frac {AC}{AD},$即$AC^2=AB · AD$
∵AB=6,AD=2
∴$AC=2\sqrt 3$
在Rt△ABC中,∵$AC=2\sqrt 3,$AB=6
∴$BC=\sqrt {AB^2-AC^2}=2\sqrt 6$
∴$sinA=\frac {BC}{AB}=\frac {2\sqrt 6}6=\frac {\sqrt 6}3,$$tanB=\frac {AC}{BC}=\frac {2\sqrt 3}{2\sqrt 6}=\frac {\sqrt 2}2$