1. 如图,某江段的水流方向经过 $ B $,$ C $,$ D $ 三点拐弯后与原方向相同. 若 $ \angle ABC = 125^{\circ} $,$ \angle BCD = 75^{\circ} $,则 $ \angle CDE $ 的度数为(

A.$ 20^{\circ} $
B.$ 25^{\circ} $
C.$ 35^{\circ} $
D.$ 50^{\circ} $
A
)A.$ 20^{\circ} $
B.$ 25^{\circ} $
C.$ 35^{\circ} $
D.$ 50^{\circ} $
答案:1.A
解析:
解:过点$C$作$CF // AB$,
因为水流方向经过$B$,$C$,$D$三点拐弯后与原方向相同,所以$AB // DE$,则$CF // DE$。
$\angle BCF = 180^{\circ} - \angle ABC = 180^{\circ} - 125^{\circ} = 55^{\circ}$,
$\angle FCD = \angle BCD - \angle BCF = 75^{\circ} - 55^{\circ} = 20^{\circ}$,
因为$CF // DE$,所以$\angle CDE = \angle FCD = 20^{\circ}$。
A
因为水流方向经过$B$,$C$,$D$三点拐弯后与原方向相同,所以$AB // DE$,则$CF // DE$。
$\angle BCF = 180^{\circ} - \angle ABC = 180^{\circ} - 125^{\circ} = 55^{\circ}$,
$\angle FCD = \angle BCD - \angle BCF = 75^{\circ} - 55^{\circ} = 20^{\circ}$,
因为$CF // DE$,所以$\angle CDE = \angle FCD = 20^{\circ}$。
A
2. 如图,若 $ \angle 1 = 40^{\circ} $,$ \angle 2 = 140^{\circ} $,直线 $ a // b $,则 $ \angle 3 = $

80°
.答案:2.80°
3. 如图,直线 $ AB // CD $. 若 $ \angle E = 90^{\circ} $,$ \angle C = 40^{\circ} $,则 $ \angle 1 = $

130°
.答案:3.130°
解析:
解:过点E作EF//AB,
∵AB//CD,
∴EF//CD,
∴∠C=∠CEF=40°,
∵∠AEC=90°,
∴∠AEF=∠AEC-∠CEF=90°-40°=50°,
∵EF//AB,
∴∠BAE=∠AEF=50°,
∵∠1+∠BAE=180°,
∴∠1=180°-50°=130°.
130°
∵AB//CD,
∴EF//CD,
∴∠C=∠CEF=40°,
∵∠AEC=90°,
∴∠AEF=∠AEC-∠CEF=90°-40°=50°,
∵EF//AB,
∴∠BAE=∠AEF=50°,
∵∠1+∠BAE=180°,
∴∠1=180°-50°=130°.
130°
4. 科学实验表明,平面镜反射光线的规律是射到平面镜上的光线和反射出来的光线与平面镜所夹的角相等. 如图①,一束平行光线 $ AB $ 与 $ DE $ 射向同一个平面镜后被反射,此时有 $ \angle ABP = \angle CBE $,$ \angle DEB = \angle FEQ $. 如图②,一束光线 $ m $ 射到平面镜 $ AP $ 上,被平面镜 $ AP $ 反射到平面镜 $ AQ $ 上,又被平面镜 $ AQ $ 反射,且平面镜 $ AQ $ 反射出来的光线 $ n $ 平行于光线 $ m $.
(1) 若 $ \angle 1 = 50^{\circ} $,求 $ \angle 2 $ 的度数;
(2) 求 $ \angle 3 $ 的度数.

(1) 若 $ \angle 1 = 50^{\circ} $,求 $ \angle 2 $ 的度数;
(2) 求 $ \angle 3 $ 的度数.
答案:
4.(1)如图,
∵∠1 = 50°,
∴∠4 = ∠1 = 50°.
∴∠6 = 180°−∠1−∠4 = 180°−50°−50° = 80°.
∵m//n,
∴∠2 + ∠6 = 180°.
∴∠2 = 100°
(2)如图,过点A作AB//m.
∵m//n,
∴AB//n,∠2 + ∠6 = 180°.根据题意,得∠4 = ∠1,∠5 = ∠7,
∴∠1 + ∠4 + ∠5 + ∠7 = (180°−∠6) + (180°−∠2) = 360°−(∠2 + ∠6) = 360°−180° = 180°.
∴∠1 + ∠7 = 90°.
∵AB//m,AB//n,
∴∠1 = ∠PAB,∠7 = ∠BAQ.
∴∠3 = ∠PAB + ∠BAQ = ∠1 + ∠7 = 90°

4.(1)如图,
∵∠1 = 50°,
∴∠4 = ∠1 = 50°.
∴∠6 = 180°−∠1−∠4 = 180°−50°−50° = 80°.
∵m//n,
∴∠2 + ∠6 = 180°.
∴∠2 = 100°
(2)如图,过点A作AB//m.
∵m//n,
∴AB//n,∠2 + ∠6 = 180°.根据题意,得∠4 = ∠1,∠5 = ∠7,
∴∠1 + ∠4 + ∠5 + ∠7 = (180°−∠6) + (180°−∠2) = 360°−(∠2 + ∠6) = 360°−180° = 180°.
∴∠1 + ∠7 = 90°.
∵AB//m,AB//n,
∴∠1 = ∠PAB,∠7 = ∠BAQ.
∴∠3 = ∠PAB + ∠BAQ = ∠1 + ∠7 = 90°
5. (2025·海安期末)已知 $ AB // CD $,点 $ E $ 在直线 $ AB $ 上,点 $ F $ 在直线 $ CD $ 上,$ P $ 为平面内一点.
(1) 如图①,若点 $ P $ 在 $ AB $,$ CD $ 之间,$ \angle EPF = 100^{\circ} $,$ \angle AEP $ 的平分线与 $ \angle CFP $ 的平分线交于点 $ Q $,求 $ \angle Q $ 的度数;
(2) 如图②,若点 $ P $ 在直线 $ AB $ 上方,$ \angle EPF = 50^{\circ} $,$ \angle CFP $ 的平分线与 $ \angle BEP $ 的平分线 $ EG $ 所在直线交于点 $ H $,求 $ \angle H $ 的度数.

(1) 如图①,若点 $ P $ 在 $ AB $,$ CD $ 之间,$ \angle EPF = 100^{\circ} $,$ \angle AEP $ 的平分线与 $ \angle CFP $ 的平分线交于点 $ Q $,求 $ \angle Q $ 的度数;
(2) 如图②,若点 $ P $ 在直线 $ AB $ 上方,$ \angle EPF = 50^{\circ} $,$ \angle CFP $ 的平分线与 $ \angle BEP $ 的平分线 $ EG $ 所在直线交于点 $ H $,求 $ \angle H $ 的度数.
答案:
5.(1)如图①,过点P作PM//AB,过点Q作QN//AB,则∠EPM = ∠AEP.
∵AB//CD,
∴PM//CD.
∴∠FPM = ∠PFC.
∴∠EPF = ∠EPM + ∠FPM = ∠AEP + ∠PFC = 100°.同理,可得∠EQF = ∠AEQ + ∠QFC.
∵∠AEP的平分线与∠CFP的平分线交于点Q,
∴∠AEQ = $\frac{1}{2}$∠AEP,∠QFC = $\frac{1}{2}$∠CFP.
∴∠EQF = ∠AEQ + ∠QFC = $\frac{1}{2}$∠AEP + $\frac{1}{2}$∠PFC = $\frac{1}{2}$(∠AEP + ∠PFC) = 50°
(2)如图②,过点P作PM//AB,过点Q作QN//AB,则∠EPM = ∠AEP.
∵AB//CD,
∴PM//CD.
∴∠FPM = ∠PFC.
∴∠EPF = ∠EPM + ∠FPM = ∠AEP + ∠PFC = 100°.同理,可得∠EQF = ∠AEQ + ∠QFC.
∵∠AEP的平分线与∠CFP的平分线交于点Q,
∴∠AEQ = $\frac{1}{2}$∠AEP,∠QFC = $\frac{1}{2}$∠CFP.
∴∠EQF = ∠AEQ + ∠QFC = $\frac{1}{2}$∠AEP + $\frac{1}{2}$∠PFC = $\frac{1}{2}$(∠AEP + ∠PFC) = 50°
(2)如图②,过点P作PM//AB,过点Q作QN//AB,则∠EPM = ∠AEP.
∵AB//CD,
∴PM//CD.
∴∠FPM = ∠PFC.
∴∠EPF = ∠EPM + ∠FPM = ∠AEP + ∠PFC = 100°.同理,可得∠EQF = ∠AEQ + ∠QFC.
∵∠AEP的平分线与∠CFP的平分线交于点Q,
∴∠AEQ = $\frac{1}{2}$∠AEP,∠QFC = $\frac{1}{2}$∠CFP.
∴∠EQF = ∠AEQ + ∠QFC = $\frac{1}{2}$∠AEP + $\frac{1}{2}$∠PFC = $\frac{1}{2}$(∠AEP + ∠PFC) = 50°
(2)如图②,过点P作PM//AB,过点Q作QN//AB,则∠EPM = ∠AEP.
∵AB//CD,
∴PM//CD.
∴∠FPM = ∠PFC.
∴∠EPF = ∠EPM + ∠FPM = ∠AEP + ∠PFC = 100°.同理,可得∠EQF = ∠AEQ + ∠QFC.
∵∠AEP的平分线与∠CFP的平分线交于点Q,
∴∠AEQ = $\frac{1}{2}$∠AEP,∠QFC = $\frac{1}{2}$∠CFP.
∴∠EQF = ∠AEQ + ∠QFC = $\frac{1}{2}$∠AEP + $\frac{1}{2}$∠PFC = $\frac{1}{2}$(∠AEP + ∠PFC) = 50°
(2)如图②,过点H作HJ//AB,设PF与AB的交点为O.
∵AB//CD,
∴HJ//AB//CD.
∴∠POA = ∠PFC,∠GHJ = ∠GEO,∠FHJ = ∠CFH.
∵∠EPF = 50°,
∴∠BEP + ∠POA = ∠BEP + ∠PFC = 130°.
∵∠CFP的平分线与∠BEP的平分线EG所在直线交于点H,
∴∠BEP = 2∠GEO,∠PFC = 2∠CFH.
∴2∠GEO + 2∠CFH = ∠BEP + ∠PFC = 130°.
∴∠GHF = ∠GHJ + ∠FHJ = ∠GEO + ∠CFH = 65°

5.(1)如图①,过点P作PM//AB,过点Q作QN//AB,则∠EPM = ∠AEP.
∵AB//CD,
∴PM//CD.
∴∠FPM = ∠PFC.
∴∠EPF = ∠EPM + ∠FPM = ∠AEP + ∠PFC = 100°.同理,可得∠EQF = ∠AEQ + ∠QFC.
∵∠AEP的平分线与∠CFP的平分线交于点Q,
∴∠AEQ = $\frac{1}{2}$∠AEP,∠QFC = $\frac{1}{2}$∠CFP.
∴∠EQF = ∠AEQ + ∠QFC = $\frac{1}{2}$∠AEP + $\frac{1}{2}$∠PFC = $\frac{1}{2}$(∠AEP + ∠PFC) = 50°
(2)如图②,过点P作PM//AB,过点Q作QN//AB,则∠EPM = ∠AEP.
∵AB//CD,
∴PM//CD.
∴∠FPM = ∠PFC.
∴∠EPF = ∠EPM + ∠FPM = ∠AEP + ∠PFC = 100°.同理,可得∠EQF = ∠AEQ + ∠QFC.
∵∠AEP的平分线与∠CFP的平分线交于点Q,
∴∠AEQ = $\frac{1}{2}$∠AEP,∠QFC = $\frac{1}{2}$∠CFP.
∴∠EQF = ∠AEQ + ∠QFC = $\frac{1}{2}$∠AEP + $\frac{1}{2}$∠PFC = $\frac{1}{2}$(∠AEP + ∠PFC) = 50°
(2)如图②,过点P作PM//AB,过点Q作QN//AB,则∠EPM = ∠AEP.
∵AB//CD,
∴PM//CD.
∴∠FPM = ∠PFC.
∴∠EPF = ∠EPM + ∠FPM = ∠AEP + ∠PFC = 100°.同理,可得∠EQF = ∠AEQ + ∠QFC.
∵∠AEP的平分线与∠CFP的平分线交于点Q,
∴∠AEQ = $\frac{1}{2}$∠AEP,∠QFC = $\frac{1}{2}$∠CFP.
∴∠EQF = ∠AEQ + ∠QFC = $\frac{1}{2}$∠AEP + $\frac{1}{2}$∠PFC = $\frac{1}{2}$(∠AEP + ∠PFC) = 50°
(2)如图②,过点P作PM//AB,过点Q作QN//AB,则∠EPM = ∠AEP.
∵AB//CD,
∴PM//CD.
∴∠FPM = ∠PFC.
∴∠EPF = ∠EPM + ∠FPM = ∠AEP + ∠PFC = 100°.同理,可得∠EQF = ∠AEQ + ∠QFC.
∵∠AEP的平分线与∠CFP的平分线交于点Q,
∴∠AEQ = $\frac{1}{2}$∠AEP,∠QFC = $\frac{1}{2}$∠CFP.
∴∠EQF = ∠AEQ + ∠QFC = $\frac{1}{2}$∠AEP + $\frac{1}{2}$∠PFC = $\frac{1}{2}$(∠AEP + ∠PFC) = 50°
(2)如图②,过点H作HJ//AB,设PF与AB的交点为O.
∵AB//CD,
∴HJ//AB//CD.
∴∠POA = ∠PFC,∠GHJ = ∠GEO,∠FHJ = ∠CFH.
∵∠EPF = 50°,
∴∠BEP + ∠POA = ∠BEP + ∠PFC = 130°.
∵∠CFP的平分线与∠BEP的平分线EG所在直线交于点H,
∴∠BEP = 2∠GEO,∠PFC = 2∠CFH.
∴2∠GEO + 2∠CFH = ∠BEP + ∠PFC = 130°.
∴∠GHF = ∠GHJ + ∠FHJ = ∠GEO + ∠CFH = 65°