21. (2024·通州期末)根据下表回答问题:

(1)$4251.528$的立方根是
(2)设$\sqrt{270}$的整数部分为$a$,求$4a$的平方根.
(1)$4251.528$的立方根是
16.2
,$2.6244$的算术平方根是1.62
;(2)设$\sqrt{270}$的整数部分为$a$,求$4a$的平方根.
答案:21. (1) 16.2 1.62 (2) $\because 16 < \sqrt{270} < 17$, $\therefore a = 16$.
$\therefore 4a = 64$. $\because$ 64的平方根为$\pm 8$, $\therefore 4a$的平方根为$\pm 8$
$\therefore 4a = 64$. $\because$ 64的平方根为$\pm 8$, $\therefore 4a$的平方根为$\pm 8$
22. 已知$a - 1$的平方根是$\pm2$,$b + 2$是$-27$的立方根,$c$是$\sqrt{12}$的整数部分.
(1)求$a + b + c$的值;
(2)若$x$是$\sqrt{12}$的小数部分,求$x-\sqrt{12}+10$的平方根.
(1)求$a + b + c$的值;
(2)若$x$是$\sqrt{12}$的小数部分,求$x-\sqrt{12}+10$的平方根.
答案:22. (1) 根据题意, 得$a - 1 = (\pm 2)^2 = 4$, $b + 2 = \sqrt[3]{-27} = -3$,
$\therefore a = 5$, $b = -5$. $\because \sqrt{9} < \sqrt{12} < \sqrt{16}$, $\therefore 3 < \sqrt{12} < 4$. $\because c$是$\sqrt{12}$的整数部分, $\therefore c = 3$. $\therefore a + b + c = 5 - 5 + 3 = 3$
(2) $\because 3 < \sqrt{12} < 4$, $\therefore x = \sqrt{12} - 3$. $\therefore x - \sqrt{12} + 10 = \sqrt{12} - 3 - \sqrt{12} + 10 = 7$. $\therefore x - \sqrt{12} + 10$的平方根是$\pm \sqrt{7}$
$\therefore a = 5$, $b = -5$. $\because \sqrt{9} < \sqrt{12} < \sqrt{16}$, $\therefore 3 < \sqrt{12} < 4$. $\because c$是$\sqrt{12}$的整数部分, $\therefore c = 3$. $\therefore a + b + c = 5 - 5 + 3 = 3$
(2) $\because 3 < \sqrt{12} < 4$, $\therefore x = \sqrt{12} - 3$. $\therefore x - \sqrt{12} + 10 = \sqrt{12} - 3 - \sqrt{12} + 10 = 7$. $\therefore x - \sqrt{12} + 10$的平方根是$\pm \sqrt{7}$
23. 将两块边长均为$3$的小正方形纸板按如图①所示的方式剪开,拼成如图②所示的一块大正方形纸板,你能求出这块大正方形纸板的面积吗?它的边长是整数吗?如果不是整数,那么请你估计它的边长的值在哪两个相邻的整数之间.

答案:23. 能 由题意, 得大正方形纸板是由两块小正方形纸板剪拼成的, $\therefore$大正方形纸板的边长是$\sqrt{3^2 + 3^2} = \sqrt{18}$. 显然$\sqrt{18}$不是整数. $\because 4^2 = 16$, $5^2 = 25$, $\therefore 4 < \sqrt{18} < 5$. $\therefore$估计它的边长的值在4和5之间
解析:
能;大正方形纸板的面积为$3^2 + 3^2 = 18$;它的边长不是整数;$4 < \sqrt{18} < 5$,即边长的值在4和5之间。