10. (分类讨论思想)若一个等腰三角形的两边长分别为$8\sqrt{\frac{1}{8}}$,$6\sqrt{\frac{1}{2}}$,则该等腰三角形的周长为
$7\sqrt{2}$或$8\sqrt{2}$
.答案:10.$7\sqrt{2}$或$8\sqrt{2}$
解析:
$8\sqrt{\frac{1}{8}} = 8×\frac{\sqrt{2}}{4} = 2\sqrt{2}$,$6\sqrt{\frac{1}{2}} = 6×\frac{\sqrt{2}}{2} = 3\sqrt{2}$。
情况一:腰长为$2\sqrt{2}$,底边长为$3\sqrt{2}$。
$2\sqrt{2} + 2\sqrt{2} = 4\sqrt{2} > 3\sqrt{2}$,能构成三角形,周长为$2\sqrt{2} + 2\sqrt{2} + 3\sqrt{2} = 7\sqrt{2}$。
情况二:腰长为$3\sqrt{2}$,底边长为$2\sqrt{2}$。
$3\sqrt{2} + 3\sqrt{2} = 6\sqrt{2} > 2\sqrt{2}$,能构成三角形,周长为$3\sqrt{2} + 3\sqrt{2} + 2\sqrt{2} = 8\sqrt{2}$。
该等腰三角形的周长为$7\sqrt{2}$或$8\sqrt{2}$。
情况一:腰长为$2\sqrt{2}$,底边长为$3\sqrt{2}$。
$2\sqrt{2} + 2\sqrt{2} = 4\sqrt{2} > 3\sqrt{2}$,能构成三角形,周长为$2\sqrt{2} + 2\sqrt{2} + 3\sqrt{2} = 7\sqrt{2}$。
情况二:腰长为$3\sqrt{2}$,底边长为$2\sqrt{2}$。
$3\sqrt{2} + 3\sqrt{2} = 6\sqrt{2} > 2\sqrt{2}$,能构成三角形,周长为$3\sqrt{2} + 3\sqrt{2} + 2\sqrt{2} = 8\sqrt{2}$。
该等腰三角形的周长为$7\sqrt{2}$或$8\sqrt{2}$。
11. (教材变式)现将一张长方形纸片的长增加$\sqrt{18}\mathrm{cm}$,宽增加$6\sqrt{2}\mathrm{cm}$,就成为一张面积为$162\mathrm{cm}^2$的正方形纸片,则原长方形纸片的面积为
$36$
$\mathrm{cm}^2$.答案:11.$36$
解析:
设正方形纸片的边长为$a\ \mathrm{cm}$,则$a^2 = 162$,解得$a=\sqrt{162}=9\sqrt{2}\ \mathrm{cm}$。
原长方形的长为$9\sqrt{2}-\sqrt{18}=9\sqrt{2}-3\sqrt{2}=6\sqrt{2}\ \mathrm{cm}$,宽为$9\sqrt{2}-6\sqrt{2}=3\sqrt{2}\ \mathrm{cm}$。
原长方形面积为$6\sqrt{2}×3\sqrt{2}=6×3×(\sqrt{2})^2=18×2=36\ \mathrm{cm}^2$。
$36$
原长方形的长为$9\sqrt{2}-\sqrt{18}=9\sqrt{2}-3\sqrt{2}=6\sqrt{2}\ \mathrm{cm}$,宽为$9\sqrt{2}-6\sqrt{2}=3\sqrt{2}\ \mathrm{cm}$。
原长方形面积为$6\sqrt{2}×3\sqrt{2}=6×3×(\sqrt{2})^2=18×2=36\ \mathrm{cm}^2$。
$36$
12. 观察等式:$\sqrt{3}+\frac{\sqrt{3}}{2}=\frac{3}{2}\sqrt{3}$,$2+\frac{2}{3}=\frac{4×2}{3}$,$\sqrt{5}+\frac{\sqrt{5}}{4}=\frac{5}{4}\sqrt{5}$,….按上述规律,若$\sqrt{15}+\frac{a}{b}=\frac{15a}{b}$,则$a^2 - b=$
$1$
.答案:12.$1$ 解析:$\because \sqrt{3}+\frac{\sqrt{3}}{2}=\frac{3}{2}\sqrt{3}$,$2+\frac{2}{3}=\frac{4×2}{3}$,$\sqrt{5}+\frac{\sqrt{5}}{4}=\frac{5}{4}\sqrt{5}$,
$\therefore \sqrt{n}+\frac{\sqrt{n}}{n - 1}=\frac{n\sqrt{n}}{n - 1}(n\geq3)$.$\therefore$ 当$n = 15$时,$\sqrt{15}+\frac{\sqrt{15}}{14}=$
$\frac{15}{14}\sqrt{15}$.$\therefore a=\sqrt{15}$,$b = 14$.$\therefore a^{2}-b=15 - 14=1$.
$\therefore \sqrt{n}+\frac{\sqrt{n}}{n - 1}=\frac{n\sqrt{n}}{n - 1}(n\geq3)$.$\therefore$ 当$n = 15$时,$\sqrt{15}+\frac{\sqrt{15}}{14}=$
$\frac{15}{14}\sqrt{15}$.$\therefore a=\sqrt{15}$,$b = 14$.$\therefore a^{2}-b=15 - 14=1$.
13. (教材变式)计算:
(1)$5\sqrt{8}-2\sqrt{27}+\sqrt{18}+2\sqrt{12}$;
(2)$3\sqrt{5}+2\sqrt{\frac{1}{32}}-(\sqrt{20}+\frac{1}{4}\sqrt{50})$.
(1)$5\sqrt{8}-2\sqrt{27}+\sqrt{18}+2\sqrt{12}$;
(2)$3\sqrt{5}+2\sqrt{\frac{1}{32}}-(\sqrt{20}+\frac{1}{4}\sqrt{50})$.
答案:13.(1)$13\sqrt{2}-2\sqrt{3}$ (2)$\sqrt{5}-\sqrt{2}$
解析:
(1)$5\sqrt{8}-2\sqrt{27}+\sqrt{18}+2\sqrt{12}$
$=5×2\sqrt{2}-2×3\sqrt{3}+3\sqrt{2}+2×2\sqrt{3}$
$=10\sqrt{2}-6\sqrt{3}+3\sqrt{2}+4\sqrt{3}$
$=(10\sqrt{2}+3\sqrt{2})+(-6\sqrt{3}+4\sqrt{3})$
$=13\sqrt{2}-2\sqrt{3}$
(2)$3\sqrt{5}+2\sqrt{\frac{1}{32}}-(\sqrt{20}+\frac{1}{4}\sqrt{50})$
$=3\sqrt{5}+2×\frac{\sqrt{2}}{8}-(2\sqrt{5}+\frac{1}{4}×5\sqrt{2})$
$=3\sqrt{5}+\frac{\sqrt{2}}{4}-2\sqrt{5}-\frac{5\sqrt{2}}{4}$
$=(3\sqrt{5}-2\sqrt{5})+(\frac{\sqrt{2}}{4}-\frac{5\sqrt{2}}{4})$
$=\sqrt{5}-\sqrt{2}$
$=5×2\sqrt{2}-2×3\sqrt{3}+3\sqrt{2}+2×2\sqrt{3}$
$=10\sqrt{2}-6\sqrt{3}+3\sqrt{2}+4\sqrt{3}$
$=(10\sqrt{2}+3\sqrt{2})+(-6\sqrt{3}+4\sqrt{3})$
$=13\sqrt{2}-2\sqrt{3}$
(2)$3\sqrt{5}+2\sqrt{\frac{1}{32}}-(\sqrt{20}+\frac{1}{4}\sqrt{50})$
$=3\sqrt{5}+2×\frac{\sqrt{2}}{8}-(2\sqrt{5}+\frac{1}{4}×5\sqrt{2})$
$=3\sqrt{5}+\frac{\sqrt{2}}{4}-2\sqrt{5}-\frac{5\sqrt{2}}{4}$
$=(3\sqrt{5}-2\sqrt{5})+(\frac{\sqrt{2}}{4}-\frac{5\sqrt{2}}{4})$
$=\sqrt{5}-\sqrt{2}$
14. 化简:$\frac{1}{2}a\sqrt{4a}+16a\sqrt{\frac{a}{9}}-4a^2\sqrt{\frac{1}{a}}$,并任取一个$a$的值使其结果为正整数.
答案:14.原式=$\frac{7a\sqrt{a}}{3}$ 答案不唯一,如当$a = 9$时,原式=$63$
解析:
原式$=\frac{1}{2}a · 2\sqrt{a} + 16a · \frac{\sqrt{a}}{3} - 4a^2 · \frac{\sqrt{a}}{a}$
$=a\sqrt{a} + \frac{16a\sqrt{a}}{3} - 4a\sqrt{a}$
$=(1 + \frac{16}{3} - 4)a\sqrt{a}$
$=\frac{7a\sqrt{a}}{3}$
当$a = 9$时,原式$=\frac{7 × 9 × \sqrt{9}}{3} = 63$
$=a\sqrt{a} + \frac{16a\sqrt{a}}{3} - 4a\sqrt{a}$
$=(1 + \frac{16}{3} - 4)a\sqrt{a}$
$=\frac{7a\sqrt{a}}{3}$
当$a = 9$时,原式$=\frac{7 × 9 × \sqrt{9}}{3} = 63$
15. (新考法·探究题)在学完“二次根式的乘法与除法”后,数学老师给同学们留下这样一道思考题:已知$x + y = - 6$,$xy = 4$,求$\sqrt{\frac{y}{x}}+\sqrt{\frac{x}{y}}$的值.
小刚是这样解的:$\sqrt{\frac{y}{x}}+\sqrt{\frac{x}{y}}=\frac{\sqrt{y}}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{y}}=\frac{\sqrt{xy}}{x}+\frac{\sqrt{xy}}{y}=\frac{\sqrt{xy}(x + y)}{xy}$.把$x + y = - 6$,$xy = 4$代入,得$\frac{\sqrt{xy}(x + y)}{xy}=\frac{\sqrt{4}×(-6)}{4}=-3$.
显然,小刚的解题过程是错误的,请你写出正确的解题过程.
小刚是这样解的:$\sqrt{\frac{y}{x}}+\sqrt{\frac{x}{y}}=\frac{\sqrt{y}}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{y}}=\frac{\sqrt{xy}}{x}+\frac{\sqrt{xy}}{y}=\frac{\sqrt{xy}(x + y)}{xy}$.把$x + y = - 6$,$xy = 4$代入,得$\frac{\sqrt{xy}(x + y)}{xy}=\frac{\sqrt{4}×(-6)}{4}=-3$.
显然,小刚的解题过程是错误的,请你写出正确的解题过程.
答案:15.$\because x + y=-6$,$xy = 4$,$\therefore x<0$,$y<0$.$\therefore \sqrt{\frac{y}{x}}+\sqrt{\frac{x}{y}}=$
$\sqrt{\frac{-y}{-x}}+\sqrt{\frac{-x}{-y}}=\frac{\sqrt{xy}}{-x}+\frac{\sqrt{xy}}{-y}=-\frac{\sqrt{xy}(x + y)}{xy}=$
$-\frac{\sqrt{4×(-6)}}{4}=3$
$\sqrt{\frac{-y}{-x}}+\sqrt{\frac{-x}{-y}}=\frac{\sqrt{xy}}{-x}+\frac{\sqrt{xy}}{-y}=-\frac{\sqrt{xy}(x + y)}{xy}=$
$-\frac{\sqrt{4×(-6)}}{4}=3$