22. (12 分)如图①,在$\triangle OAB$中,$\angle OAB = 90^{\circ}$,$\angle AOB = 30^{\circ}$,$OB = 8$。以$OB$为边在$\triangle OAB$外作等边三角形$OBC$,$D$是$OB$的中点,连接$AD$并延长,交$OC$于点$E$。
(1) 求证:四边形$ABCE$是平行四边形;
(2) 如图②,将图①中的四边形$ABCO$折叠,使点$C$与点$A$重合,折痕为$FG$,求$OG$的长。

(1) 求证:四边形$ABCE$是平行四边形;
(2) 如图②,将图①中的四边形$ABCO$折叠,使点$C$与点$A$重合,折痕为$FG$,求$OG$的长。
答案:22. (1)在$Rt\triangle OAB$中,$\angle OAB = 90°$,$\angle AOB = 30°$,$D$是$OB$的中点,$\therefore DO = DA=\frac{1}{2}OB$,$\therefore \angle DOA=\angle DAO = 30°$。$\because \triangle OBC$是等边三角形,$\therefore \angle COB=\angle C = 60°$,$\therefore \angle COA=\angle COB+\angle DOA = 90°$,$\therefore \angle AEO=180° - \angle COA - \angle DAO = 60°$,$\angle COA+\angle OAB = 180°$,$\therefore \angle AEO=\angle C$,$OC// AB$,$\therefore AE// BC$,$\therefore$四边形$ABCE$是平行四边形。(2)$\because \triangle OBC$为等边三角形,$\therefore OC = OB = 8$。设$OG = x$。由折叠,可知$AG = CG = 8 - x$。在$Rt\triangle OAB$中,$\because \angle OAB = 90°$,$\angle AOB = 30°$,$OB = 8$,$\therefore AB = 4$,$\therefore OA=\sqrt{OB^{2}-AB^{2}} = 4\sqrt{3}$。由(1),知$\angle COA = 90°$,$\therefore$在$Rt\triangle OAG$中,由勾股定理,得$OG^{2}+OA^{2}=AG^{2}$,即$x^{2}+(4\sqrt{3})^{2}=(8 - x)^{2}$,解得$x = 1$,$\therefore OG$的长为$1$。