10. (2025·北京中考)如图,在正方形$ABCD$中,点$E$在边$CD$上,$CF ⊥ BE$,垂足为$F$。若$AB = 1$,$∠ EBC = 30^{\circ}$,则$△ ABF$的面积为

$\frac{3}{8}$
。答案:
10.$\frac{3}{8}$解析:如图,过点F分别作FM⊥BC,FN⊥AB,垂足为M,N,连接AM,则∠FMC = 90°.
∵四边形ABCD为正方形,
∴∠ABC = 90°,
∴∠ABC = ∠FMC,
∴AB//FM,
∴FN = BM.
∵$S_{△ABF}$ = $\frac{1}{2}$AB·FN,$S_{△ABM}$ = $\frac{1}{2}$AB·BM,
∴$S_{△ABF}$ = $S_{△ABM}$.
∵CF⊥BE,AB = 1 = BC,∠EBC = 30°,
∴∠BFC = 90°,∠BCF = 60°,CF = $\frac{1}{2}$BC = $\frac{1}{2}$,
∴∠CFM = 90° - ∠BCF = 30°,
∴CM = $\frac{1}{2}$CF = $\frac{1}{4}$,
∴BM = BC - CM = $\frac{3}{4}$,
∴$S_{△ABF}$ = $S_{△ABM}$ = $\frac{1}{2}$×1×$\frac{3}{4}$ = $\frac{3}{8}$.
10.$\frac{3}{8}$解析:如图,过点F分别作FM⊥BC,FN⊥AB,垂足为M,N,连接AM,则∠FMC = 90°.
∵四边形ABCD为正方形,
∴∠ABC = 90°,
∴∠ABC = ∠FMC,
∴AB//FM,
∴FN = BM.
∵$S_{△ABF}$ = $\frac{1}{2}$AB·FN,$S_{△ABM}$ = $\frac{1}{2}$AB·BM,
∴$S_{△ABF}$ = $S_{△ABM}$.
∵CF⊥BE,AB = 1 = BC,∠EBC = 30°,
∴∠BFC = 90°,∠BCF = 60°,CF = $\frac{1}{2}$BC = $\frac{1}{2}$,
∴∠CFM = 90° - ∠BCF = 30°,
∴CM = $\frac{1}{2}$CF = $\frac{1}{4}$,
∴BM = BC - CM = $\frac{3}{4}$,
∴$S_{△ABF}$ = $S_{△ABM}$ = $\frac{1}{2}$×1×$\frac{3}{4}$ = $\frac{3}{8}$.
11. 某同学的卧室地面形状是一个如图所示的四边形,现在量得$AB = BC$,$∠ B = ∠ D = 90^{\circ}$,若点$B$到$CD$的距离为$4$m,则该同学的卧室地面的面积为

16
$m^{2}$。答案:
11.16解析:如图,过点B作BE⊥CD于点E,则BE = 4m,∠BEC = ∠BED = 90°,过点B作BF⊥DA,交DA的延长线于点F,则∠F = 90°,
∴∠F = ∠BEC.
∵∠F = ∠D = ∠BED = 90°,
∴四边形BEDF是矩形,
∴∠EBF = 90°,即∠FBA + ∠ABE = 90°.
∵∠CBE + ∠ABE = ∠ABC = 90°,
∴∠FBA = ∠EBC.在△ABF和△CBE中,$\begin{cases}∠F = ∠BEC\\∠ABF = ∠CBE\\AB = CB\end{cases}$,
∴△ABF≌△CBE(AAS),
∴BF = BE = 4m,
∴矩形BEDF是正方形,$S_{正方形BEDF}$ = BE² = 16m².
∵△ABF≌△CBE,
∴$S_{四边形ABCD}$ = $S_{四边形ABED}$ + $S_{△BCE}$ = $S_{四边形ABED}$ + $S_{△ABF}$ = $S_{正方形BEDF}$ = 16m².
11.16解析:如图,过点B作BE⊥CD于点E,则BE = 4m,∠BEC = ∠BED = 90°,过点B作BF⊥DA,交DA的延长线于点F,则∠F = 90°,
∴∠F = ∠BEC.
∵∠F = ∠D = ∠BED = 90°,
∴四边形BEDF是矩形,
∴∠EBF = 90°,即∠FBA + ∠ABE = 90°.
∵∠CBE + ∠ABE = ∠ABC = 90°,
∴∠FBA = ∠EBC.在△ABF和△CBE中,$\begin{cases}∠F = ∠BEC\\∠ABF = ∠CBE\\AB = CB\end{cases}$,
∴△ABF≌△CBE(AAS),
∴BF = BE = 4m,
∴矩形BEDF是正方形,$S_{正方形BEDF}$ = BE² = 16m².
∵△ABF≌△CBE,
∴$S_{四边形ABCD}$ = $S_{四边形ABED}$ + $S_{△BCE}$ = $S_{四边形ABED}$ + $S_{△ABF}$ = $S_{正方形BEDF}$ = 16m².
12. 如图,矩形$ABCD$中,$AD = 6$,$DC = 8$,菱形$EFGH$的三个顶点$E$,$G$,$H$分别在矩形$ABCD$的边$AB$,$CD$,$DA$上,$AH = 2$,连接$CF$。
(1) 若$DG = 2$,求证:四边形$EFGH$为正方形;
(2) 若$DG = 6$,则$△ FCG$的面积为

(1) 若$DG = 2$,求证:四边形$EFGH$为正方形;
(2) 若$DG = 6$,则$△ FCG$的面积为
2
。答案:
12.(1)
∵四边形EFGH为菱形,
∴HG = EH.
∵AH = 2,DG = 2,
∴DG = AH.在Rt△DHG和Rt△AEH中,$\begin{cases}HG = EH\\DG = AH\end{cases}$,
∴Rt△DHG≌Rt△AEH(HL),
∴∠DHG = ∠AEH.
∵∠AEH + ∠AHE = 90°,
∴∠DHG + ∠AHE = 90°,
∴∠GHE = 90°,
∴菱形EFGH为正方形.
(2)2解析:作FQ⊥CD交DC的延长线于点Q,连接GE,如图.
∵四边形ABCD为矩形,
∴AB//CD,
∴∠AEG = ∠QGE,即∠AEH + ∠HEG = ∠QGF + ∠FGE.
∵四边形EFGH为菱形,
∴HE = GF,HE//GF,
∴∠HEG = ∠FGE,
∴∠AEH = ∠QGF.在△AEH和△QGF中,$\begin{cases}∠A = ∠Q\\∠AEH = ∠QGF\\HE = FG\end{cases}$,
∴△AEH≌△QGF(AAS),
∴QF = AH = 2.
∵DG = 6,CD = 8,
∴CG = 2,
∴△FCG的面积 = $\frac{1}{2}$CG·FQ = $\frac{1}{2}$×2×2 = 2.
12.(1)
∵四边形EFGH为菱形,
∴HG = EH.
∵AH = 2,DG = 2,
∴DG = AH.在Rt△DHG和Rt△AEH中,$\begin{cases}HG = EH\\DG = AH\end{cases}$,
∴Rt△DHG≌Rt△AEH(HL),
∴∠DHG = ∠AEH.
∵∠AEH + ∠AHE = 90°,
∴∠DHG + ∠AHE = 90°,
∴∠GHE = 90°,
∴菱形EFGH为正方形.
(2)2解析:作FQ⊥CD交DC的延长线于点Q,连接GE,如图.
∵四边形ABCD为矩形,
∴AB//CD,
∴∠AEG = ∠QGE,即∠AEH + ∠HEG = ∠QGF + ∠FGE.
∵四边形EFGH为菱形,
∴HE = GF,HE//GF,
∴∠HEG = ∠FGE,
∴∠AEH = ∠QGF.在△AEH和△QGF中,$\begin{cases}∠A = ∠Q\\∠AEH = ∠QGF\\HE = FG\end{cases}$,
∴△AEH≌△QGF(AAS),
∴QF = AH = 2.
∵DG = 6,CD = 8,
∴CG = 2,
∴△FCG的面积 = $\frac{1}{2}$CG·FQ = $\frac{1}{2}$×2×2 = 2.
13. (2024·泸州中考)如图,在边长为$6$的正方形$ABCD$中,点$E$,$F$分别是边$AB$,$BC$上的动点,且满足$AE = BF$,$AF$与$DE$交于点$O$,点$M$是$DF$的中点,$G$是边$AB$上的点,$AG = 2GB$,则$OM + \frac{1}{2}FG$的最小值是(

A.$4$
B.$5$
C.$8$
D.$10$
B
)A.$4$
B.$5$
C.$8$
D.$10$
答案:
13.B 解析:
∵四边形ABCD是正方形,
∴AD = AB,∠DAB = ∠ABC = 90°.又
∵AE = BF,
∴△ADE≌△BAF(SAS),
∴∠ADE = ∠BAF,
∴∠DOF = ∠ADO + ∠DAO = ∠BAF + ∠DAO = ∠DAB = 90°.
∵M是DF的中点,
∴OM = $\frac{1}{2}$DF.如图所示,在AB延长线上截取BH = BG,连接FH;
∵∠FBG = ∠FBH = 90°,FB = FB,BG = BH,
∴△FBG≌△FBH(SAS),
∴FH = FG,
∴OM + $\frac{1}{2}$FG = $\frac{1}{2}$DF + $\frac{1}{2}$HF = $\frac{1}{2}$(DF + HF),
∴当H,D,F三点共线时,DF + HF有最小值,即此时OM + $\frac{1}{2}$FG有最小值,最小值即为DH的长的一半.
∵AG = 2GB,AB = 6,
∴BH = BG = 2,
∴AH = 8,在Rt△ADH中,由勾股定理,得DH = $\sqrt{AD^{2}+AH^{2}}$ = 10,
∴OM + $\frac{1}{2}$FG的最小值为5.故选B.
13.B 解析:
∵四边形ABCD是正方形,
∴AD = AB,∠DAB = ∠ABC = 90°.又
∵AE = BF,
∴△ADE≌△BAF(SAS),
∴∠ADE = ∠BAF,
∴∠DOF = ∠ADO + ∠DAO = ∠BAF + ∠DAO = ∠DAB = 90°.
∵M是DF的中点,
∴OM = $\frac{1}{2}$DF.如图所示,在AB延长线上截取BH = BG,连接FH;
∵∠FBG = ∠FBH = 90°,FB = FB,BG = BH,
∴△FBG≌△FBH(SAS),
∴FH = FG,
∴OM + $\frac{1}{2}$FG = $\frac{1}{2}$DF + $\frac{1}{2}$HF = $\frac{1}{2}$(DF + HF),
∴当H,D,F三点共线时,DF + HF有最小值,即此时OM + $\frac{1}{2}$FG有最小值,最小值即为DH的长的一半.
∵AG = 2GB,AB = 6,
∴BH = BG = 2,
∴AH = 8,在Rt△ADH中,由勾股定理,得DH = $\sqrt{AD^{2}+AH^{2}}$ = 10,
∴OM + $\frac{1}{2}$FG的最小值为5.故选B.
14. (湖南中考)问题情境:
小红同学在学习了正方形的知识后,进一步进行以下探究活动:在正方形$ABCD$的边$BC$上任意取一点$G$,以$BG$为边长向外作正方形$BEFG$,将正方形$BEFG$绕点$B$顺时针旋转。
特例感知:
(1) 当$BG$在$BC$上时,连接$DF$,$AC$相交于点$P$,小红发现点$P$恰为$DF$的中点,如图①。针对小红发现的结论,请给出证明。
(2) 小红继续连接$EG$,并延长与$DF$相交,发现交点恰好也是$DF$的中点$P$,如图②,根据小红发现的结论,请判断$△ APE$的形状,并说明理由。
规律探究:
(3) 如图③,将正方形$BEFG$绕点$B$顺时针旋转$α$,连接$DF$,点$P$是$DF$的中点,连接$AP$,$EP$,$AE$,$△ APE$的形状是否发生改变?请说明理由。


小红同学在学习了正方形的知识后,进一步进行以下探究活动:在正方形$ABCD$的边$BC$上任意取一点$G$,以$BG$为边长向外作正方形$BEFG$,将正方形$BEFG$绕点$B$顺时针旋转。
特例感知:
(1) 当$BG$在$BC$上时,连接$DF$,$AC$相交于点$P$,小红发现点$P$恰为$DF$的中点,如图①。针对小红发现的结论,请给出证明。
(2) 小红继续连接$EG$,并延长与$DF$相交,发现交点恰好也是$DF$的中点$P$,如图②,根据小红发现的结论,请判断$△ APE$的形状,并说明理由。
规律探究:
(3) 如图③,将正方形$BEFG$绕点$B$顺时针旋转$α$,连接$DF$,点$P$是$DF$的中点,连接$AP$,$EP$,$AE$,$△ APE$的形状是否发生改变?请说明理由。
答案:
14.(1)连接BD,BF,BP,如图①.
∵四边形ABCD、四边形BEFG都是正方形,
∴∠CBD = 45° = ∠FBG,
∴∠DBF = 90°.
∵四边形ABCD是正方形,
∴AD = AB,∠DAC = ∠BAC = 45°.又
∵AP = AP,
∴△APD≌△APB(SAS),
∴BP = DP,
∴∠PDB = ∠PBD.
∵∠PDB + ∠PFB = 90° = ∠PBD + ∠PBF,
∴∠PBF = ∠PFB,
∴PB = PF,
∴PD = PF,即点P恰为DF的中点.
(2)△APE是等腰直角三角形,理由如下:
∵四边形ABCD、四边形BEFG都是正方形,
∴∠CAE = ∠PEA = 45°,
∴AP = EP,∠APE = 90°,
∴△APE是等腰直角三角形.
(3)△APE的形状不改变.理由:延长EP至点M,使PM = EP,连接MA,MD,如图②.
∵四边形ABCD、四边形BEFG都是正方形,
∴AB = AD,∠BAD = ∠ABC = ∠EBG = 90°,BE = EF,BG//EF.
∵点P为DF的中点,
∴PD = PF.
∵∠DPM = ∠FPE,PM = PE,
∴△MPD≌△EPF(SAS),
∴DM = EF,∠DMP = ∠FEP,
∴BE = DM,DM//EF,
∴BG//DM.设DF交BC于点H,交BG于点N,
∴∠MDN = ∠DNB.
∵AD//BC,
∴∠ADN = ∠BHN.
∵∠BHN + ∠BNH + ∠HBN = 180°,
∴∠ADM = ∠ADN + ∠MDN = ∠BHN + ∠BNH = 180° - ∠HBN.
∵∠ABE = 360° - ∠ABC - ∠EBG - ∠HBN = 180° - ∠HBN,
∴∠ADM = ∠ABE.又
∵AD = AB,
∴△ADM≌△ABE(SAS),
∴AM = AE,∠DAM = ∠BAE.
∵PM = EP,
∴AP⊥ME,即∠APE = 90°.
∵∠DAM + ∠MAB = 90°,
∴∠BAE + ∠MAB = 90°,即∠MAE = 90°,
∴∠MAP = ∠PAE = 45°,
∴∠PEA = 45° = ∠PAE,
∴AP = EP,
∴△APE是等腰直角三角形.
14.(1)连接BD,BF,BP,如图①.
∵四边形ABCD、四边形BEFG都是正方形,
∴∠CBD = 45° = ∠FBG,
∴∠DBF = 90°.
∵四边形ABCD是正方形,
∴AD = AB,∠DAC = ∠BAC = 45°.又
∵AP = AP,
∴△APD≌△APB(SAS),
∴BP = DP,
∴∠PDB = ∠PBD.
∵∠PDB + ∠PFB = 90° = ∠PBD + ∠PBF,
∴∠PBF = ∠PFB,
∴PB = PF,
∴PD = PF,即点P恰为DF的中点.
(2)△APE是等腰直角三角形,理由如下:
∵四边形ABCD、四边形BEFG都是正方形,
∴∠CAE = ∠PEA = 45°,
∴AP = EP,∠APE = 90°,
∴△APE是等腰直角三角形.
(3)△APE的形状不改变.理由:延长EP至点M,使PM = EP,连接MA,MD,如图②.
∵四边形ABCD、四边形BEFG都是正方形,
∴AB = AD,∠BAD = ∠ABC = ∠EBG = 90°,BE = EF,BG//EF.
∵点P为DF的中点,
∴PD = PF.
∵∠DPM = ∠FPE,PM = PE,
∴△MPD≌△EPF(SAS),
∴DM = EF,∠DMP = ∠FEP,
∴BE = DM,DM//EF,
∴BG//DM.设DF交BC于点H,交BG于点N,
∴∠MDN = ∠DNB.
∵AD//BC,
∴∠ADN = ∠BHN.
∵∠BHN + ∠BNH + ∠HBN = 180°,
∴∠ADM = ∠ADN + ∠MDN = ∠BHN + ∠BNH = 180° - ∠HBN.
∵∠ABE = 360° - ∠ABC - ∠EBG - ∠HBN = 180° - ∠HBN,
∴∠ADM = ∠ABE.又
∵AD = AB,
∴△ADM≌△ABE(SAS),
∴AM = AE,∠DAM = ∠BAE.
∵PM = EP,
∴AP⊥ME,即∠APE = 90°.
∵∠DAM + ∠MAB = 90°,
∴∠BAE + ∠MAB = 90°,即∠MAE = 90°,
∴∠MAP = ∠PAE = 45°,
∴∠PEA = 45° = ∠PAE,
∴AP = EP,
∴△APE是等腰直角三角形.