1. (2025·陕西)计算$2a^{2}· ab$的结果为(
A.$4a^{2}b$
B.$4a^{3}b$
C.$2a^{2}b$
D.$2a^{3}b$
D
)A.$4a^{2}b$
B.$4a^{3}b$
C.$2a^{2}b$
D.$2a^{3}b$
答案:1. D
解析:
$2a^{2}·ab = 2×a^{2}×a×b = 2a^{3}b$,答案选D。
2. (2025·仪征一模)若()$· 2a^{2}b = 2a^{3}b$,则括号内应填的单项式是(
A.$a$
B.$2a$
C.$ab$
D.$2ab$
A
)A.$a$
B.$2a$
C.$ab$
D.$2ab$
答案:2. A
解析:
设括号内的单项式为$x$,则$x · 2a^{2}b = 2a^{3}b$,解得$x = \frac{2a^{3}b}{2a^{2}b} = a$。A
3. (2024·海陵区二模)下列各式的运算结果与$a^{2}b^{4}$相同的是(
A.$a^{2}b· a^{2}b^{2}$
B.$a· (ab)^{2}$
C.$(ab^{2})^{2}$
D.$ab· a^{2}b^{2}$
C
)A.$a^{2}b· a^{2}b^{2}$
B.$a· (ab)^{2}$
C.$(ab^{2})^{2}$
D.$ab· a^{2}b^{2}$
答案:3. C
4. (2024·宝应县月考)一种计算机每秒可做$4× 10^{8}$次运算,它工作了$6× 10^{5}$秒,共可做
$2.4× 10^{14}$
次运算.(用科学记数法表示)答案:4. $2.4× 10^{14}$
解析:
$(4×10^{8})×(6×10^{5})=(4×6)×(10^{8}×10^{5})=24×10^{13}=2.4×10^{14}$
5. 计算:
(1)$(-3a^{2}b)^{2}· 2ab^{2}$;
(2)$-\dfrac {2}{3}a^{2}b· \dfrac {5}{6}ac^{2}$;
(3)$(-\dfrac {1}{2}x^{2}y)^{3}· 3xy^{2}· (2xy^{2})^{2}$;
(4)$-6m^{2}n· (x - y)^{3}· \dfrac {1}{3}mn^{2}(y - x)^{2}$.
(1)$(-3a^{2}b)^{2}· 2ab^{2}$;
(2)$-\dfrac {2}{3}a^{2}b· \dfrac {5}{6}ac^{2}$;
(3)$(-\dfrac {1}{2}x^{2}y)^{3}· 3xy^{2}· (2xy^{2})^{2}$;
(4)$-6m^{2}n· (x - y)^{3}· \dfrac {1}{3}mn^{2}(y - x)^{2}$.
答案:5. 解:(1)原式$=9a^{4}b^{2}· 2ab^{2}=18a^{5}b^{4}.$
(2)原式$=-\dfrac{2}{3}× \dfrac{5}{6}a^{2}bc^{2}=-\dfrac{5}{9}a^{2}bc^{2}.$
(3)原式$=-\dfrac{1}{8}x^{5}y^{3}· 3xy^{2}· 4x^{2}y^{4}=-\dfrac{3}{2}x^{9}y^{9}.$
(4)原式$=-6× \dfrac{1}{3}m^{3}n^{3}(x-y)^{5}=-2m^{3}n^{3}(x-y)^{5}.$
(2)原式$=-\dfrac{2}{3}× \dfrac{5}{6}a^{2}bc^{2}=-\dfrac{5}{9}a^{2}bc^{2}.$
(3)原式$=-\dfrac{1}{8}x^{5}y^{3}· 3xy^{2}· 4x^{2}y^{4}=-\dfrac{3}{2}x^{9}y^{9}.$
(4)原式$=-6× \dfrac{1}{3}m^{3}n^{3}(x-y)^{5}=-2m^{3}n^{3}(x-y)^{5}.$
6. (2024·江阴月考)计算$(6× 10^{-3})× (8× 10^{-5})$的结果是(
A.$4.8× 10^{-9}$
B.$4.8× 10^{-15}$
C.$4.8× 10^{-8}$
D.$4.8× 10^{-7}$
D
)A.$4.8× 10^{-9}$
B.$4.8× 10^{-15}$
C.$4.8× 10^{-8}$
D.$4.8× 10^{-7}$
答案:6. D
解析:
$(6× 10^{-3})× (8× 10^{-5})$
$=6× 8× 10^{-3}× 10^{-5}$
$=48× 10^{-8}$
$=4.8× 10^{-7}$
D
$=6× 8× 10^{-3}× 10^{-5}$
$=48× 10^{-8}$
$=4.8× 10^{-7}$
D
7. (2024·梁溪区月考)下列算式:①$3a^{3}· (2a^{2})^{2} = 12a^{12}$;②$(2× 10^{3})× (\dfrac {1}{2}× 10^{3}) = 10^{6}$;③$-3xy· (-2xyz)^{2} = 12x^{3}y^{3}z^{2}$;④$4x^{3}· 5x^{4} = 9x^{12}$.其中正确的个数是(
A.$0$
B.$1$
C.$2$
D.$3$
B
)A.$0$
B.$1$
C.$2$
D.$3$
答案:7. B
解析:
①$3a^{3}·(2a^{2})^{2}=3a^{3}·4a^{4}=12a^{7}≠12a^{12}$;
②$(2×10^{3})×(\dfrac{1}{2}×10^{3})=(2×\dfrac{1}{2})×(10^{3}×10^{3})=1×10^{6}=10^{6}$;
③$-3xy·(-2xyz)^{2}=-3xy·4x^{2}y^{2}z^{2}=-12x^{3}y^{3}z^{2}≠12x^{3}y^{3}z^{2}$;
④$4x^{3}·5x^{4}=20x^{7}≠9x^{12}$.
正确的只有②,个数是1.
②$(2×10^{3})×(\dfrac{1}{2}×10^{3})=(2×\dfrac{1}{2})×(10^{3}×10^{3})=1×10^{6}=10^{6}$;
③$-3xy·(-2xyz)^{2}=-3xy·4x^{2}y^{2}z^{2}=-12x^{3}y^{3}z^{2}≠12x^{3}y^{3}z^{2}$;
④$4x^{3}·5x^{4}=20x^{7}≠9x^{12}$.
正确的只有②,个数是1.
8. 若$(2xy^{2})^{3}· (\dfrac {1}{4}x^{m}y^{n})^{2} = \dfrac {1}{2}x^{7}y^{8}$,则(
A.$m = 4$,$n = 2$
B.$m = 3$,$n = 3$
C.$m = 2$,$n = 1$
D.$m = 3$,$n = 1$
C
)A.$m = 4$,$n = 2$
B.$m = 3$,$n = 3$
C.$m = 2$,$n = 1$
D.$m = 3$,$n = 1$
答案:8. C
解析:
$(2xy^{2})^{3}· (\dfrac {1}{4}x^{m}y^{n})^{2}$
$=8x^{3}y^{6}· \dfrac{1}{16}x^{2m}y^{2n}$
$=\dfrac{1}{2}x^{3+2m}y^{6+2n}$
因为结果为$\dfrac{1}{2}x^{7}y^{8}$,所以可得:
$\begin{cases}3 + 2m = 7\\6 + 2n = 8\end{cases}$
解得$\begin{cases}m = 2\ = 1\end{cases}$
C
$=8x^{3}y^{6}· \dfrac{1}{16}x^{2m}y^{2n}$
$=\dfrac{1}{2}x^{3+2m}y^{6+2n}$
因为结果为$\dfrac{1}{2}x^{7}y^{8}$,所以可得:
$\begin{cases}3 + 2m = 7\\6 + 2n = 8\end{cases}$
解得$\begin{cases}m = 2\ = 1\end{cases}$
C
9. 计算:$m^{2}n^{-2}· 3m^{-3}n^{3} =$
$\dfrac{3n}{m}$
.答案:9. $\dfrac{3n}{m}$
解析:
$m^{2}n^{-2}· 3m^{-3}n^{3} = 3m^{2-3}n^{-2+3} = 3m^{-1}n^{1} = \dfrac{3n}{m}$