1. (2024·通州区期中)计算$-3mn(m - \frac{1}{2}n)$的结果是(
A.$3m^{2}n + mn^{2}$
B.$-3m^{2}n - \frac{3}{2}mn^{2}$
C.$-3m^{2}n + \frac{3}{2}mn^{2}$
D.$-3m^{2}n + \frac{1}{2}mn^{2}$
C
)A.$3m^{2}n + mn^{2}$
B.$-3m^{2}n - \frac{3}{2}mn^{2}$
C.$-3m^{2}n + \frac{3}{2}mn^{2}$
D.$-3m^{2}n + \frac{1}{2}mn^{2}$
答案:1. C
解析:
$-3mn · m + (-3mn) · (-\frac{1}{2}n) = -3m^{2}n + \frac{3}{2}mn^{2}$,结果为选项C。
2. (2025·高新区期中)若三角形的底边长为$4n$,对应的高为$3n + 1$,则此三角形的面积为(
A.$6n^{2} - 2n$
B.$6n^{2} + 2n$
C.$12n^{2} + 4n$
D.$4n^{2} + n$
B
)A.$6n^{2} - 2n$
B.$6n^{2} + 2n$
C.$12n^{2} + 4n$
D.$4n^{2} + n$
答案:2. B
解析:
三角形面积公式为$S = \frac{1}{2} × 底 × 高$。已知底边长为$4n$,高为$3n + 1$,则面积$S = \frac{1}{2} × 4n × (3n + 1)$。先计算$\frac{1}{2} × 4n = 2n$,再计算$2n × (3n + 1) = 6n^2 + 2n$。
B
B
3. (2025·南充)计算:$a(a - 3) - a^{2} =$
$-3a$
.答案:3. $-3a$
解析:
$a(a - 3) - a^{2}$
$=a^{2} - 3a - a^{2}$
$=-3a$
$=a^{2} - 3a - a^{2}$
$=-3a$
4. (2024·鼓楼区期中)填空:(
$4xy$
)·$(3xy^{2}z - 2xz) = 12x^{2}y^{3}z - 8x^{2}yz$.答案:4. $4xy$
5. 计算:
(1) $-2a^{2}·(3ab^{2} - 5ab^{3})$;
(2) $(5a^{2} - \frac{4}{9}a + 1)·(-3a^{2})$;
(3) $(-4ax)^{2}·(5a - 3ax^{2})$;
(4) $-2x^{n}·(-3x^{n + 1} + 4x^{n - 1})$;
(5) $-2a^{2}(2ab + b^{2}) - 5ab(a^{2} - ab)$;
(6) $3a^{2}(a^{3}b^{2} - 2a) - 4a(-a^{2}b)^{2}$.
(1) $-2a^{2}·(3ab^{2} - 5ab^{3})$;
(2) $(5a^{2} - \frac{4}{9}a + 1)·(-3a^{2})$;
(3) $(-4ax)^{2}·(5a - 3ax^{2})$;
(4) $-2x^{n}·(-3x^{n + 1} + 4x^{n - 1})$;
(5) $-2a^{2}(2ab + b^{2}) - 5ab(a^{2} - ab)$;
(6) $3a^{2}(a^{3}b^{2} - 2a) - 4a(-a^{2}b)^{2}$.
答案:5. 解:(1) 原式$=-2a^{2}· 3ab^{2}-2a^{2}· (-5ab^{3})=-6a^{3}b^{2}+10a^{3}b^{3}$.
(2) 原式$=-15a^{4}+\frac {4}{3}a^{3}-3a^{2}$.
(3) 原式$=16a^{2}x^{2}· (5a-3ax^{2})=16a^{2}x^{2}· 5a-16a^{2}x^{2}· 3ax^{2}=80a^{3}x^{2}-48a^{3}x^{4}$.
(4) 原式$=6x^{2n+1}-8x^{2n-1}$.
(5) 原式$=-4a^{3}b-2a^{2}b^{2}-5a^{3}b+5a^{2}b^{2}=-9a^{3}b+3a^{2}b^{2}$.
(6) 原式$=3a^{5}b^{2}-6a^{3}-4a^{5}b^{2}=-a^{5}b^{2}-6a^{3}$.
(2) 原式$=-15a^{4}+\frac {4}{3}a^{3}-3a^{2}$.
(3) 原式$=16a^{2}x^{2}· (5a-3ax^{2})=16a^{2}x^{2}· 5a-16a^{2}x^{2}· 3ax^{2}=80a^{3}x^{2}-48a^{3}x^{4}$.
(4) 原式$=6x^{2n+1}-8x^{2n-1}$.
(5) 原式$=-4a^{3}b-2a^{2}b^{2}-5a^{3}b+5a^{2}b^{2}=-9a^{3}b+3a^{2}b^{2}$.
(6) 原式$=3a^{5}b^{2}-6a^{3}-4a^{5}b^{2}=-a^{5}b^{2}-6a^{3}$.
6. (2024·宜兴月考)下列计算不正确的是(
A.$(ab - 1)×(-4ab^{2}) = -4a^{2}b^{3} + 4ab^{2}$
B.$(3x^{2} + xy - y^{2})·3x^{2} = 9x^{4} + 3x^{3}y - 3x^{2}y^{2}$
C.$(-3a)·(a^{2} - 2a + 1) = -3a^{3} + 6a^{2}$
D.$(-2x)·(3x^{2} - 4x - 2) = -6x^{3} + 8x^{2} + 4x$
C
)A.$(ab - 1)×(-4ab^{2}) = -4a^{2}b^{3} + 4ab^{2}$
B.$(3x^{2} + xy - y^{2})·3x^{2} = 9x^{4} + 3x^{3}y - 3x^{2}y^{2}$
C.$(-3a)·(a^{2} - 2a + 1) = -3a^{3} + 6a^{2}$
D.$(-2x)·(3x^{2} - 4x - 2) = -6x^{3} + 8x^{2} + 4x$
答案:6. C
7. 已知$M$,$N$分别表示不同的单项式,且$3x(M - 5x) = 6x^{2}y^{3} + N$,则(
A.$M = 2xy^{3}$,$N = -15x$
B.$M = 3xy^{3}$,$N = -15x^{2}$
C.$M = 2xy^{3}$,$N = -15x^{2}$
D.$M = 2xy^{3}$,$N = 15x^{2}$
C
)A.$M = 2xy^{3}$,$N = -15x$
B.$M = 3xy^{3}$,$N = -15x^{2}$
C.$M = 2xy^{3}$,$N = -15x^{2}$
D.$M = 2xy^{3}$,$N = 15x^{2}$
答案:7. C
解析:
$3x(M - 5x) = 3xM - 15x^{2}$,
因为$3x(M - 5x) = 6x^{2}y^{3} + N$,
所以$3xM - 15x^{2} = 6x^{2}y^{3} + N$,
则$3xM = 6x^{2}y^{3}$,$N = -15x^{2}$,
由$3xM = 6x^{2}y^{3}$得$M = 2xy^{3}$,
所以$M = 2xy^{3}$,$N = -15x^{2}$,答案选C。
因为$3x(M - 5x) = 6x^{2}y^{3} + N$,
所以$3xM - 15x^{2} = 6x^{2}y^{3} + N$,
则$3xM = 6x^{2}y^{3}$,$N = -15x^{2}$,
由$3xM = 6x^{2}y^{3}$得$M = 2xy^{3}$,
所以$M = 2xy^{3}$,$N = -15x^{2}$,答案选C。