1. (2024·太仓期末)如图,在$△ ABC$中,$AC=BC$,$∠ B=40^{\circ}$,$D$是边$AB$上一点,点$B$关于直线$CD$的对称点为$B'$,当$B'D// AC$,则$∠ BCD$的度数为(

A.$25^{\circ}$
B.$30^{\circ}$
C.$35^{\circ}$
D.$40^{\circ}$
B
)A.$25^{\circ}$
B.$30^{\circ}$
C.$35^{\circ}$
D.$40^{\circ}$
答案:1. B
2. (2024·江阴月考)如图,在$△ ABC$中,$∠ ACB=90^{\circ}$,$∠ B-∠ A=10^{\circ}$,$D$是$AB$上一点,$△ ACD$与$△ ECD$关于$CD$对称,边$CE$交$AB$于点$F$.若$△ DEF$是直角三角形,则$∠ ACD=$

$25^{\circ}$或$5^{\circ}$
.答案:2. $25^{\circ}$或$5^{\circ}$ 点拨:在$△ ABC$中,$∠ ACB = 90^{\circ}$,$∠ B - ∠ A = 10^{\circ}$,$\therefore∠ A = 40^{\circ}$,$∠ B = 50^{\circ}$。
由对称的性质得$∠ E = ∠ A = 40^{\circ}$,$∠ ACD = ∠ ECD$。
当$∠ DFE = 90^{\circ}$时,则$∠ CFB = 90^{\circ}$,
$\therefore∠ BCF = 90^{\circ} - ∠ B = 40^{\circ}$,
$\therefore∠ ACE = ∠ ACB - ∠ BCF = 50^{\circ}$,
$\therefore∠ ACD = \frac{1}{2}∠ ACE = 25^{\circ}$;
当$∠ EDF = 90^{\circ}$时,
$\because∠ E = 40^{\circ}$,$\therefore∠ CFB = ∠ DFE = 50^{\circ}$,
$\therefore∠ BCF = 180^{\circ} - ∠ CFB - ∠ B = 80^{\circ}$,
$\therefore∠ ACE = ∠ ACB - ∠ BCF = 10^{\circ}$,
$\therefore∠ ACD = \frac{1}{2}∠ ACE = 5^{\circ}$。综上所述,$∠ ACD$度数为$25^{\circ}$或$5^{\circ}$。
由对称的性质得$∠ E = ∠ A = 40^{\circ}$,$∠ ACD = ∠ ECD$。
当$∠ DFE = 90^{\circ}$时,则$∠ CFB = 90^{\circ}$,
$\therefore∠ BCF = 90^{\circ} - ∠ B = 40^{\circ}$,
$\therefore∠ ACE = ∠ ACB - ∠ BCF = 50^{\circ}$,
$\therefore∠ ACD = \frac{1}{2}∠ ACE = 25^{\circ}$;
当$∠ EDF = 90^{\circ}$时,
$\because∠ E = 40^{\circ}$,$\therefore∠ CFB = ∠ DFE = 50^{\circ}$,
$\therefore∠ BCF = 180^{\circ} - ∠ CFB - ∠ B = 80^{\circ}$,
$\therefore∠ ACE = ∠ ACB - ∠ BCF = 10^{\circ}$,
$\therefore∠ ACD = \frac{1}{2}∠ ACE = 5^{\circ}$。综上所述,$∠ ACD$度数为$25^{\circ}$或$5^{\circ}$。
3. 如图,直线$l$分别与直线$AB$,$CD$相交于点$E$,$F$,$AB// CD$,$P$是射线$EA$上的一个动点,点$P$,$E$不重合,连接$PF$.点$N$与点$E$关于直线$PF$对称.
(1)当直线$l$与直线$AB$所夹的角$β =50^{\circ}$时.
①若$∠ PFD$的平分线是$FE$,请求出$∠ PFE$的度数;
②若点$N$恰好落在直线$CD$上,试求出$∠ PFE$的度数.
(2)当$∠ CFN=\dfrac{1}{3}∠ CFP=\dfrac{1}{3}β$时,试求出$∠ PFE$的度数.

(1)当直线$l$与直线$AB$所夹的角$β =50^{\circ}$时.
①若$∠ PFD$的平分线是$FE$,请求出$∠ PFE$的度数;
②若点$N$恰好落在直线$CD$上,试求出$∠ PFE$的度数.
(2)当$∠ CFN=\dfrac{1}{3}∠ CFP=\dfrac{1}{3}β$时,试求出$∠ PFE$的度数.
答案:
3. 解:(1)①$\because AB// CD$,$β = 50^{\circ}$,$\therefore∠ EFD = β = 50^{\circ}$。
$\because FE$平分$∠ PFD$,$\therefore∠ PFE = ∠ EFD = 50^{\circ}$。
②当点$N$落在$AB$上时,连接$PN$,如答图①。
$\because$点$N$与点$E$关于直线$PF$对称,直线$PF$是对称轴,$\therefore∠ PFN = ∠ PFE$。

$\becauseβ = 50^{\circ}$,$\therefore∠ PEF = β = 50^{\circ}$。
$\because AB// CD$,$\therefore∠ PEF + ∠ CFE = 180^{\circ}$,
$\therefore∠ CFE = 180^{\circ} - ∠ PEF = 130^{\circ}$,
$\therefore∠ PFE = \frac{1}{2}∠ CFE = 65^{\circ}$。
(2)设$∠ CFN = x$,
$\because∠ CFN = \frac{1}{3}∠ CFP = \frac{1}{3}β$,$\therefore∠ CFP = β = 3x$。
①当点$N$在平行线$AB$,$CD$之间时,如答图②。

$\because∠ CFP = β = 3x$,$∠ CFN = x$,$AB// CD$,
$\therefore∠ PFN = ∠ CFP - ∠ CFN = 2x$,$∠ EFD = β = 3x$。
由对称可得$∠ PFE = ∠ PFN = 2x$。
$\because AB// CD$,
$\therefore∠ AEF + ∠ CFE = 3x + 2x + 2x + x = 180^{\circ}$,
$\therefore x = 22.5^{\circ}$,$\therefore∠ PFE = 2x = 45^{\circ}$;
②当点$N$在$CD$的下方时,$∠ PFN = ∠ CFP + ∠ CFN = 4x$,
由对称可得$∠ PFE = ∠ PFN = 4x$,
$\because AB// CD$,$\therefore∠ AEF + ∠ CFE = 3x + 4x + 3x = 180^{\circ}$,
$\therefore x = 18^{\circ}$,$∠ PFE = 4x = 72^{\circ}$。
综上所述,$∠ PFE$的度数是$45^{\circ}$或$72^{\circ}$。
3. 解:(1)①$\because AB// CD$,$β = 50^{\circ}$,$\therefore∠ EFD = β = 50^{\circ}$。
$\because FE$平分$∠ PFD$,$\therefore∠ PFE = ∠ EFD = 50^{\circ}$。
②当点$N$落在$AB$上时,连接$PN$,如答图①。
$\because$点$N$与点$E$关于直线$PF$对称,直线$PF$是对称轴,$\therefore∠ PFN = ∠ PFE$。
$\becauseβ = 50^{\circ}$,$\therefore∠ PEF = β = 50^{\circ}$。
$\because AB// CD$,$\therefore∠ PEF + ∠ CFE = 180^{\circ}$,
$\therefore∠ CFE = 180^{\circ} - ∠ PEF = 130^{\circ}$,
$\therefore∠ PFE = \frac{1}{2}∠ CFE = 65^{\circ}$。
(2)设$∠ CFN = x$,
$\because∠ CFN = \frac{1}{3}∠ CFP = \frac{1}{3}β$,$\therefore∠ CFP = β = 3x$。
①当点$N$在平行线$AB$,$CD$之间时,如答图②。
$\because∠ CFP = β = 3x$,$∠ CFN = x$,$AB// CD$,
$\therefore∠ PFN = ∠ CFP - ∠ CFN = 2x$,$∠ EFD = β = 3x$。
由对称可得$∠ PFE = ∠ PFN = 2x$。
$\because AB// CD$,
$\therefore∠ AEF + ∠ CFE = 3x + 2x + 2x + x = 180^{\circ}$,
$\therefore x = 22.5^{\circ}$,$\therefore∠ PFE = 2x = 45^{\circ}$;
②当点$N$在$CD$的下方时,$∠ PFN = ∠ CFP + ∠ CFN = 4x$,
由对称可得$∠ PFE = ∠ PFN = 4x$,
$\because AB// CD$,$\therefore∠ AEF + ∠ CFE = 3x + 4x + 3x = 180^{\circ}$,
$\therefore x = 18^{\circ}$,$∠ PFE = 4x = 72^{\circ}$。
综上所述,$∠ PFE$的度数是$45^{\circ}$或$72^{\circ}$。