1. 计算 $2a ÷ \frac{b}{a} · \frac{b}{2a}$ 的结果为(
A.$\frac{b^2}{a}$
B.$\frac{4}{a}$
C.$a$
D.$4a$
C
)A.$\frac{b^2}{a}$
B.$\frac{4}{a}$
C.$a$
D.$4a$
答案:1. C
解析:
$2a÷\frac{b}{a}·\frac{b}{2a}$
$=2a·\frac{a}{b}·\frac{b}{2a}$
$=2a·\frac{a}{b}·\frac{b}{2a}$
$=a$
C
$=2a·\frac{a}{b}·\frac{b}{2a}$
$=2a·\frac{a}{b}·\frac{b}{2a}$
$=a$
C
2. 若 $x$ 和 $y$ 互为倒数,则 $(x + \frac{1}{y})(2y - \frac{1}{x})$ 的值是(
A.1
B.2
C.3
D.4
B
)A.1
B.2
C.3
D.4
答案:2. B
解析:
因为$x$和$y$互为倒数,所以$xy = 1$。
$\begin{aligned}&(x + \frac{1}{y})(2y - \frac{1}{x})\\=&x · 2y - x · \frac{1}{x} + \frac{1}{y} · 2y - \frac{1}{y} · \frac{1}{x}\\=&2xy - 1 + 2 - \frac{1}{xy}\\\end{aligned}$
将$xy = 1$代入上式:
$\begin{aligned}&2×1 - 1 + 2 - \frac{1}{1}\\=&2 - 1 + 2 - 1\\=&2\end{aligned}$
B
$\begin{aligned}&(x + \frac{1}{y})(2y - \frac{1}{x})\\=&x · 2y - x · \frac{1}{x} + \frac{1}{y} · 2y - \frac{1}{y} · \frac{1}{x}\\=&2xy - 1 + 2 - \frac{1}{xy}\\\end{aligned}$
将$xy = 1$代入上式:
$\begin{aligned}&2×1 - 1 + 2 - \frac{1}{1}\\=&2 - 1 + 2 - 1\\=&2\end{aligned}$
B
3. (1) 计算:$(1 - \frac{1}{x}) ÷ \frac{1}{x} =$
(2) 化简:$(\frac{x + 2}{x^2 - 2x} - \frac{x - 1}{x^2 - 4x + 4}) ÷ \frac{x - 4}{x^2 - 2x} =$
$ x - 1 $
;(2) 化简:$(\frac{x + 2}{x^2 - 2x} - \frac{x - 1}{x^2 - 4x + 4}) ÷ \frac{x - 4}{x^2 - 2x} =$
$ \frac{1}{x - 2} $
.答案:3. (1) $ x - 1 $ (2) $ \frac{1}{x - 2} $
解析:
(1) $(1 - \frac{1}{x}) ÷ \frac{1}{x}$
$=(\frac{x}{x} - \frac{1}{x}) × x$
$=\frac{x - 1}{x} × x$
$=x - 1$
(2) $(\frac{x + 2}{x^2 - 2x} - \frac{x - 1}{x^2 - 4x + 4}) ÷ \frac{x - 4}{x^2 - 2x}$
$=[\frac{x + 2}{x(x - 2)} - \frac{x - 1}{(x - 2)^2}] × \frac{x(x - 2)}{x - 4}$
$=[\frac{(x + 2)(x - 2)}{x(x - 2)^2} - \frac{x(x - 1)}{x(x - 2)^2}] × \frac{x(x - 2)}{x - 4}$
$=[\frac{x^2 - 4 - x^2 + x}{x(x - 2)^2}] × \frac{x(x - 2)}{x - 4}$
$=\frac{x - 4}{x(x - 2)^2} × \frac{x(x - 2)}{x - 4}$
$=\frac{1}{x - 2}$
$=(\frac{x}{x} - \frac{1}{x}) × x$
$=\frac{x - 1}{x} × x$
$=x - 1$
(2) $(\frac{x + 2}{x^2 - 2x} - \frac{x - 1}{x^2 - 4x + 4}) ÷ \frac{x - 4}{x^2 - 2x}$
$=[\frac{x + 2}{x(x - 2)} - \frac{x - 1}{(x - 2)^2}] × \frac{x(x - 2)}{x - 4}$
$=[\frac{(x + 2)(x - 2)}{x(x - 2)^2} - \frac{x(x - 1)}{x(x - 2)^2}] × \frac{x(x - 2)}{x - 4}$
$=[\frac{x^2 - 4 - x^2 + x}{x(x - 2)^2}] × \frac{x(x - 2)}{x - 4}$
$=\frac{x - 4}{x(x - 2)^2} × \frac{x(x - 2)}{x - 4}$
$=\frac{1}{x - 2}$
4. 计算:
(1) $\frac{a^2}{b^2c} · (-\frac{bc^2}{2a}) ÷ \frac{a}{b}$;
(2) $\frac{m - 3}{2m - 4} ÷ (m + 2 - \frac{5}{m - 2})$;
(3) $(1 - \frac{1}{a}) ÷ (a - \frac{1}{a})$;
(4) $\frac{a + 1}{a - 1} - \frac{a}{a^2 - 2a + 1} ÷ \frac{1}{a}$.
(1) $\frac{a^2}{b^2c} · (-\frac{bc^2}{2a}) ÷ \frac{a}{b}$;
(2) $\frac{m - 3}{2m - 4} ÷ (m + 2 - \frac{5}{m - 2})$;
(3) $(1 - \frac{1}{a}) ÷ (a - \frac{1}{a})$;
(4) $\frac{a + 1}{a - 1} - \frac{a}{a^2 - 2a + 1} ÷ \frac{1}{a}$.
答案:4. 解:(1) 原式 $ = \frac{a^{2}}{b^{2}c} · ( - \frac{bc^{2}}{2a}) · \frac{b}{a} = - \frac{c}{2} $。
(2) 原式 $ = \frac{m - 3}{2(m - 2)} ÷ \frac{(m + 2)(m - 2) - 5}{m - 2} = \frac{m - 3}{2(m - 2)} · \frac{m - 2}{(m + 3)(m - 3)} = \frac{1}{2m + 6} $。
(3) 原式 $ = (\frac{a}{a} - \frac{1}{a}) ÷ (\frac{a^{2}}{a} - \frac{1}{a}) = \frac{a - 1}{a} · \frac{a}{a^{2} - 1} = \frac{a - 1}{(a - 1)(a + 1)} = \frac{1}{a + 1} $。
(4) 原式 $ = \frac{a + 1}{a - 1} - \frac{a}{(a - 1)^{2}} · a = \frac{(a + 1)(a - 1) - a^{2}}{(a - 1)^{2}} = - \frac{1}{(a - 1)^{2}} $。
(2) 原式 $ = \frac{m - 3}{2(m - 2)} ÷ \frac{(m + 2)(m - 2) - 5}{m - 2} = \frac{m - 3}{2(m - 2)} · \frac{m - 2}{(m + 3)(m - 3)} = \frac{1}{2m + 6} $。
(3) 原式 $ = (\frac{a}{a} - \frac{1}{a}) ÷ (\frac{a^{2}}{a} - \frac{1}{a}) = \frac{a - 1}{a} · \frac{a}{a^{2} - 1} = \frac{a - 1}{(a - 1)(a + 1)} = \frac{1}{a + 1} $。
(4) 原式 $ = \frac{a + 1}{a - 1} - \frac{a}{(a - 1)^{2}} · a = \frac{(a + 1)(a - 1) - a^{2}}{(a - 1)^{2}} = - \frac{1}{(a - 1)^{2}} $。
5. 先化简,再求值:$1 - \frac{a - b}{a - 2b} ÷ \frac{a^2 - b^2}{a^2 - 4ab + 4b^2}$,其中 $\frac{a}{b} = \frac{1}{3}$.
答案:5. 解:原式 $ = 1 - \frac{a - b}{a - 2b} · \frac{(a - 2b)^{2}}{(a + b)(a - b)} = 1 - \frac{a - 2b}{a + b} = \frac{a + b}{a + b} - \frac{a - 2b}{a + b} = \frac{3b}{a + b} $,
当 $ \frac{a}{b} = \frac{1}{3} $,即 $ b = 3a $ 时,原式 $ = \frac{9a}{a + 3a} = \frac{9a}{4a} = \frac{9}{4} $。
当 $ \frac{a}{b} = \frac{1}{3} $,即 $ b = 3a $ 时,原式 $ = \frac{9a}{a + 3a} = \frac{9a}{4a} = \frac{9}{4} $。