8. 如图,从一个大正方形中截去面积分别为 8 和 18 的两个小正方形,则图中阴影部分的面积为 (

A.26
B.24
C.22
D.20
B
)A.26
B.24
C.22
D.20
答案:8. B
解析:
面积为8的小正方形边长为$\sqrt{8}=2\sqrt{2}$,面积为18的小正方形边长为$\sqrt{18}=3\sqrt{2}$。大正方形边长为$2\sqrt{2}+3\sqrt{2}=5\sqrt{2}$,大正方形面积为$(5\sqrt{2})^2=50$。阴影部分面积为$50 - 8 - 18=24$。
B
B
9. 比较大小:$\sqrt{5}-3\_\_\_\_\_\_\dfrac{\sqrt{5}-2}{2}$.(填“$>$”“$<$”或“$=$”)
答案:9. $<$
解析:
$\sqrt{5}-3-\dfrac{\sqrt{5}-2}{2}=\dfrac{2\sqrt{5}-6-\sqrt{5}+2}{2}=\dfrac{\sqrt{5}-4}{2}$,因为$\sqrt{5}\approx2.236$,所以$\sqrt{5}-4\approx-1.764<0$,则$\dfrac{\sqrt{5}-4}{2}<0$,即$\sqrt{5}-3<\dfrac{\sqrt{5}-2}{2}$。
$<$
$<$
10. 已知等腰三角形的两边长分别为$2\sqrt{3}$和$5\sqrt{2}$,则此等腰三角形的周长为
$2\sqrt{3}+10\sqrt{2}$
.答案:10. $2\sqrt{3}+10\sqrt{2}$
解析:
当腰长为$2\sqrt{3}$时,三边长分别为$2\sqrt{3}$,$2\sqrt{3}$,$5\sqrt{2}$。因为$2\sqrt{3}+2\sqrt{3}=4\sqrt{3}=\sqrt{48}$,$5\sqrt{2}=\sqrt{50}$,$\sqrt{48}<\sqrt{50}$,不满足三角形两边之和大于第三边,舍去。
当腰长为$5\sqrt{2}$时,三边长分别为$5\sqrt{2}$,$5\sqrt{2}$,$2\sqrt{3}$。$5\sqrt{2}+5\sqrt{2}=10\sqrt{2}>\sqrt{12}=2\sqrt{3}$,$5\sqrt{2}+2\sqrt{3}>\sqrt{50}=5\sqrt{2}$,满足三角形三边关系。
周长为$5\sqrt{2}+5\sqrt{2}+2\sqrt{3}=10\sqrt{2}+2\sqrt{3}$。
$2\sqrt{3}+10\sqrt{2}$
当腰长为$5\sqrt{2}$时,三边长分别为$5\sqrt{2}$,$5\sqrt{2}$,$2\sqrt{3}$。$5\sqrt{2}+5\sqrt{2}=10\sqrt{2}>\sqrt{12}=2\sqrt{3}$,$5\sqrt{2}+2\sqrt{3}>\sqrt{50}=5\sqrt{2}$,满足三角形三边关系。
周长为$5\sqrt{2}+5\sqrt{2}+2\sqrt{3}=10\sqrt{2}+2\sqrt{3}$。
$2\sqrt{3}+10\sqrt{2}$
11. 若$a$,$b$为有理数,且$\sqrt{8}+\sqrt{18}+\sqrt{\dfrac{1}{8}}=a+b\sqrt{2}$,则$a=$
$0$
,$b=$$\frac{21}{4}$
.答案:11. $0$ $\frac{21}{4}$
解析:
$\begin{aligned}\sqrt{8}+\sqrt{18}+\sqrt{\dfrac{1}{8}}&=2\sqrt{2}+3\sqrt{2}+\dfrac{\sqrt{2}}{4}\\&=(2 + 3 + \dfrac{1}{4})\sqrt{2}\\&=\dfrac{21}{4}\sqrt{2}\end{aligned}$
因为$\sqrt{8}+\sqrt{18}+\sqrt{\dfrac{1}{8}}=a + b\sqrt{2}$,所以$a = 0$,$b=\dfrac{21}{4}$。
$0$;$\dfrac{21}{4}$
因为$\sqrt{8}+\sqrt{18}+\sqrt{\dfrac{1}{8}}=a + b\sqrt{2}$,所以$a = 0$,$b=\dfrac{21}{4}$。
$0$;$\dfrac{21}{4}$
12. 计算:
(1)$\sqrt{24}+\sqrt{\dfrac{1}{3}}-\sqrt{\dfrac{1}{27}}-\sqrt{36}$;
(2)$\sqrt{96}+\sqrt{\dfrac{1}{2}}-\sqrt{\dfrac{1}{8}}+\sqrt{6}$;
(3)$4b\sqrt{\dfrac{a}{b}}+\dfrac{2}{a}\sqrt{a^{3}b}-(3a\sqrt{\dfrac{b}{a}}+\sqrt{9ab})(a>0,b>0)$;
(4)$|\sqrt{2}-\sqrt{6}|+\sqrt{(\sqrt{2}-1)^{2}}-\sqrt{(\sqrt{6}-3)^{2}}$.
(1)$\sqrt{24}+\sqrt{\dfrac{1}{3}}-\sqrt{\dfrac{1}{27}}-\sqrt{36}$;
(2)$\sqrt{96}+\sqrt{\dfrac{1}{2}}-\sqrt{\dfrac{1}{8}}+\sqrt{6}$;
(3)$4b\sqrt{\dfrac{a}{b}}+\dfrac{2}{a}\sqrt{a^{3}b}-(3a\sqrt{\dfrac{b}{a}}+\sqrt{9ab})(a>0,b>0)$;
(4)$|\sqrt{2}-\sqrt{6}|+\sqrt{(\sqrt{2}-1)^{2}}-\sqrt{(\sqrt{6}-3)^{2}}$.
答案:12. 解:(1) 原式 $=2\sqrt{6}+\frac{\sqrt{3}}{3}-\frac{\sqrt{3}}{9}-6=2\sqrt{6}+\frac{2}{9}\sqrt{3}-6$.
(2) 原式 $=4\sqrt{6}+\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{4}+\sqrt{6}=5\sqrt{6}+\frac{\sqrt{2}}{4}$.
(3) 原式 $=4\sqrt{ab}+2\sqrt{ab}-(3\sqrt{ab}+3\sqrt{ab})=6\sqrt{ab}-6\sqrt{ab}=0$.
(4) 原式 $=\sqrt{6}-\sqrt{2}+\sqrt{2}-1-3+\sqrt{6}=2\sqrt{6}-4$.
(2) 原式 $=4\sqrt{6}+\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{4}+\sqrt{6}=5\sqrt{6}+\frac{\sqrt{2}}{4}$.
(3) 原式 $=4\sqrt{ab}+2\sqrt{ab}-(3\sqrt{ab}+3\sqrt{ab})=6\sqrt{ab}-6\sqrt{ab}=0$.
(4) 原式 $=\sqrt{6}-\sqrt{2}+\sqrt{2}-1-3+\sqrt{6}=2\sqrt{6}-4$.
13. 阅读下面的材料,并解答问题:
$\dfrac{1}{\sqrt{2}+1}=\dfrac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}=\sqrt{2}-1$;
$\dfrac{1}{\sqrt{3}+\sqrt{2}}=\dfrac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}=\sqrt{3}-\sqrt{2}$;
$\dfrac{1}{\sqrt{4}+\sqrt{3}}=\dfrac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}=\sqrt{4}-\sqrt{3}$.
(1)观察上面的等式,请直接写出化简$\dfrac{1}{\sqrt{n+1}+\sqrt{n}}$($n$为正整数)的结果为
(2)计算:$(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})=$
(3)请利用上面的规律及解法计算:$(\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+···+\dfrac{1}{\sqrt{2026}+\sqrt{2025}})×(\sqrt{2026}+1)$.
$\dfrac{1}{\sqrt{2}+1}=\dfrac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}=\sqrt{2}-1$;
$\dfrac{1}{\sqrt{3}+\sqrt{2}}=\dfrac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}=\sqrt{3}-\sqrt{2}$;
$\dfrac{1}{\sqrt{4}+\sqrt{3}}=\dfrac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}=\sqrt{4}-\sqrt{3}$.
(1)观察上面的等式,请直接写出化简$\dfrac{1}{\sqrt{n+1}+\sqrt{n}}$($n$为正整数)的结果为
$\sqrt{n+1}-\sqrt{n}$
;(2)计算:$(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})=$
$1$
;(3)请利用上面的规律及解法计算:$(\dfrac{1}{\sqrt{2}+1}+\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{1}{\sqrt{4}+\sqrt{3}}+···+\dfrac{1}{\sqrt{2026}+\sqrt{2025}})×(\sqrt{2026}+1)$.
答案:13. (1) $\sqrt{n+1}-\sqrt{n}$ (2) $1$
(3) 解:原式 $=(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+···+\sqrt{2026}-\sqrt{2025})(\sqrt{2026}+1)=(\sqrt{2026}-1)(\sqrt{2026}+1)=2026-1=2025$.
(3) 解:原式 $=(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+···+\sqrt{2026}-\sqrt{2025})(\sqrt{2026}+1)=(\sqrt{2026}-1)(\sqrt{2026}+1)=2026-1=2025$.