11. 利用因式分解计算:
(1)$(-2)^{101}+(-2)^{100}$;
(2)$121×0.13+12.1×0.9-12×1.21$;
(3)$202^{2}+98^{2}+202×196$;
(4)$\frac{1}{4}×6.16^{2}-4×1.04^{2}$.
(1)$(-2)^{101}+(-2)^{100}$;
(2)$121×0.13+12.1×0.9-12×1.21$;
(3)$202^{2}+98^{2}+202×196$;
(4)$\frac{1}{4}×6.16^{2}-4×1.04^{2}$.
答案:11. 解:(1) 原式 $ = (-2)^{100} × (-2 + 1) = 2^{100} × (-1) = -2^{100} $
(2) 原式 $ = 12.1 × 1.3 + 12.1 × 0.9 - 1.2 × 12.1 = 12.1 × (1.3 + 0.9 - 1.2) = 12.1 $
(3) 原式 $ = (202 + 98)^2 = 90000 $
(4) 原式 $ = ( \frac{6.16}{2} )^2 - (2 × 1.04)^2 = (3.08 + 2.08) × (3.08 - 2.08) = 5.16 $
(2) 原式 $ = 12.1 × 1.3 + 12.1 × 0.9 - 1.2 × 12.1 = 12.1 × (1.3 + 0.9 - 1.2) = 12.1 $
(3) 原式 $ = (202 + 98)^2 = 90000 $
(4) 原式 $ = ( \frac{6.16}{2} )^2 - (2 × 1.04)^2 = (3.08 + 2.08) × (3.08 - 2.08) = 5.16 $
12. 已知$x^{2}+y^{2}+xy-3y+3=0$,求$x^{y}$的值.
答案:12. 解:$ \because x^2 + y^2 + xy - 3y + 3 = 0 $
$ \therefore ( x + \frac{y}{2} )^2 + 3 ( \frac{y}{2} - 1 )^2 = 0 $
则 $ x + \frac{y}{2} = 0 $,$ \frac{y}{2} - 1 = 0 $,解得 $ x = -1 $,$ y = 2 $
$ \therefore x^y = (-1)^2 = 1 $
$ \therefore ( x + \frac{y}{2} )^2 + 3 ( \frac{y}{2} - 1 )^2 = 0 $
则 $ x + \frac{y}{2} = 0 $,$ \frac{y}{2} - 1 = 0 $,解得 $ x = -1 $,$ y = 2 $
$ \therefore x^y = (-1)^2 = 1 $
13. (1)已知n是整数,关于代数式$(2n+1)^{2}-1$,有下列结论:①它能被5整除;②它能被6整除;③它能被8整除. 其中正确的是
(2)$3^{2022}-4×3^{2021}+10×3^{2020}$能被21整除吗?试说明理由.
③
.(填序号)(2)$3^{2022}-4×3^{2021}+10×3^{2020}$能被21整除吗?试说明理由.
答案:13. (1) ③
(2) 解:能,理由如下:
$ \because $ 原式 $ = 3^{2020} × (3^2 - 4 × 3 + 10) = 3^{2020} × (9 - 12 + 10) = 3^{2020} × 7 = 21 × 3^{2019} $
$ \therefore 3^{2022} - 4 × 3^{2021} + 10 × 3^{2020} $ 能被 21 整除
(2) 解:能,理由如下:
$ \because $ 原式 $ = 3^{2020} × (3^2 - 4 × 3 + 10) = 3^{2020} × (9 - 12 + 10) = 3^{2020} × 7 = 21 × 3^{2019} $
$ \therefore 3^{2022} - 4 × 3^{2021} + 10 × 3^{2020} $ 能被 21 整除
14. 已知$△ ABC$的三边长a,b,c满足$a^{2}-2ab+b^{2}=ac-bc$,试判断$△ ABC$的形状,并说明理由.
答案:14. 解:$ △ ABC $ 为等腰三角形。理由如下:
$ \because a^2 - 2ab + b^2 = ac - bc $,$ \therefore (a - b)^2 = c(a - b) $
$ \therefore (a - b)^2 - c(a - b) = 0 $,$ \therefore (a - b)(a - b - c) = 0 $
$ \because a $,$ b $,$ c $ 是 $ △ ABC $ 的三边长,
$ \therefore a - b - c ≠ 0 $,$ \therefore a - b = 0 $,$ \therefore a = b $
$ \therefore △ ABC $ 为等腰三角形。
$ \because a^2 - 2ab + b^2 = ac - bc $,$ \therefore (a - b)^2 = c(a - b) $
$ \therefore (a - b)^2 - c(a - b) = 0 $,$ \therefore (a - b)(a - b - c) = 0 $
$ \because a $,$ b $,$ c $ 是 $ △ ABC $ 的三边长,
$ \therefore a - b - c ≠ 0 $,$ \therefore a - b = 0 $,$ \therefore a = b $
$ \therefore △ ABC $ 为等腰三角形。