9. 在$\triangle ABC$中,三个内角$\angle A$,$\angle B$,$\angle C$满足$\angle B - \angle A = \angle C - \angle B$,则$\angle B$的度数为
60°
.答案:9.60°
解析:
解:因为$\angle B - \angle A = \angle C - \angle B$,所以$2\angle B = \angle A + \angle C$。
在$\triangle ABC$中,$\angle A + \angle B + \angle C = 180°$,将$\angle A + \angle C = 2\angle B$代入得:
$2\angle B + \angle B = 180°$
$3\angle B = 180°$
$\angle B = 60°$
60°
在$\triangle ABC$中,$\angle A + \angle B + \angle C = 180°$,将$\angle A + \angle C = 2\angle B$代入得:
$2\angle B + \angle B = 180°$
$3\angle B = 180°$
$\angle B = 60°$
60°
10. 如图,在$\triangle ABC$中,$AD$平分$\angle BAC$.若$\angle 2 = 70^{\circ}$,则$\angle 1 + \angle 3 =$_________$^{\circ}$.

答案:10.140
解析:
解:
$\because \angle 2$是$\triangle ABD$的外角,
$\therefore \angle 2 = \angle 1 + \angle BAD$,即$\angle BAD = \angle 2 - \angle 1$。
$\because AD$平分$\angle BAC$,
$\therefore \angle BAC = 2\angle BAD = 2(\angle 2 - \angle 1)$。
在$\triangle ABC$中,$\angle BAC + \angle 1 + \angle ACB = 180°$,
又$\because \angle 3 + \angle ACB = 180°$,$\therefore \angle ACB = 180° - \angle 3$。
代入得:$2(\angle 2 - \angle 1) + \angle 1 + (180° - \angle 3) = 180°$,
化简得:$2\angle 2 - \angle 1 - \angle 3 = 0$,即$\angle 1 + \angle 3 = 2\angle 2$。
$\because \angle 2 = 70°$,
$\therefore \angle 1 + \angle 3 = 2 × 70° = 140°$。
$140$
$\because \angle 2$是$\triangle ABD$的外角,
$\therefore \angle 2 = \angle 1 + \angle BAD$,即$\angle BAD = \angle 2 - \angle 1$。
$\because AD$平分$\angle BAC$,
$\therefore \angle BAC = 2\angle BAD = 2(\angle 2 - \angle 1)$。
在$\triangle ABC$中,$\angle BAC + \angle 1 + \angle ACB = 180°$,
又$\because \angle 3 + \angle ACB = 180°$,$\therefore \angle ACB = 180° - \angle 3$。
代入得:$2(\angle 2 - \angle 1) + \angle 1 + (180° - \angle 3) = 180°$,
化简得:$2\angle 2 - \angle 1 - \angle 3 = 0$,即$\angle 1 + \angle 3 = 2\angle 2$。
$\because \angle 2 = 70°$,
$\therefore \angle 1 + \angle 3 = 2 × 70° = 140°$。
$140$
11. 在社会实践手工课上,小茗同学设计了如图所示的一个零件,如果$\angle A = 52^{\circ}$,$\angle B = 25^{\circ}$,$\angle C = 30^{\circ}$,$\angle D = 35^{\circ}$,$\angle E = 72^{\circ}$,那么$\angle F =$_________$^{\circ}$.

答案:
11.70 解析:如图,连接AD,连接AE并延长到点M,连接AF 并延长到点N.
∵∠BEM是△ABE的外角,
∴∠BEM=∠BAE+∠B.同理,可得∠DEM=∠DAE+∠ADE,∠DFN=∠DAF+∠ADF,∠CFN=∠CAF+∠C,
∴∠BEM+∠DEM+∠DFN+∠CFN=∠BAE+∠B+∠DAE+∠ADE+∠DAF+∠ADF+∠CAF+∠C,即∠BED+∠CFD=∠BAC+∠B+∠C+∠FDE,
∴72°+∠CFD=52°+25°+30°+35°,
∴∠CFD=70°.

11.70 解析:如图,连接AD,连接AE并延长到点M,连接AF 并延长到点N.
∵∠BEM是△ABE的外角,
∴∠BEM=∠BAE+∠B.同理,可得∠DEM=∠DAE+∠ADE,∠DFN=∠DAF+∠ADF,∠CFN=∠CAF+∠C,
∴∠BEM+∠DEM+∠DFN+∠CFN=∠BAE+∠B+∠DAE+∠ADE+∠DAF+∠ADF+∠CAF+∠C,即∠BED+∠CFD=∠BAC+∠B+∠C+∠FDE,
∴72°+∠CFD=52°+25°+30°+35°,
∴∠CFD=70°.
12. 如图,在$\triangle ABC$中,$BO$,$CO$分别平分$\angle ABC$和$\angle ACB$.
(1)若$\angle A = 40^{\circ}$,则$\angle BOC$的度数为
(2)求证:$\angle BOC = 90^{\circ} + \frac{1}{2}\angle A$.

(1)若$\angle A = 40^{\circ}$,则$\angle BOC$的度数为
110°
;(2)求证:$\angle BOC = 90^{\circ} + \frac{1}{2}\angle A$.
答案:12.(1)110° (2)
∵△ABC的内角和为180°,
∴∠ABC+∠ACB=180°−∠A.
∵BO,CO分别平分∠ABC和∠ACB,
∴∠OBC= $\frac{1}{2}$∠ABC,∠OCB= $\frac{1}{2}$∠ACB,
∴∠OBC+∠OCB= $\frac{1}{2}$(∠ABC+∠ACB)=90°− $\frac{1}{2}$∠A.
∵△OBC的内角和为180°,
∴∠BOC=180°−(∠OBC+∠OCB)=180°−(90°− $\frac{1}{2}$∠A)=90°+ $\frac{1}{2}$∠A
∵△ABC的内角和为180°,
∴∠ABC+∠ACB=180°−∠A.
∵BO,CO分别平分∠ABC和∠ACB,
∴∠OBC= $\frac{1}{2}$∠ABC,∠OCB= $\frac{1}{2}$∠ACB,
∴∠OBC+∠OCB= $\frac{1}{2}$(∠ABC+∠ACB)=90°− $\frac{1}{2}$∠A.
∵△OBC的内角和为180°,
∴∠BOC=180°−(∠OBC+∠OCB)=180°−(90°− $\frac{1}{2}$∠A)=90°+ $\frac{1}{2}$∠A
13. (教材 P158 练习第 1 题变式)【数学建模】如图①所示的图形我们把它称为“8 字形”,易证:$\angle A + \angle B = \angle C + \angle D$.
【简单应用】
(1)如图②,$AP$,$CP$分别平分$\angle BAD$,$\angle BCD$.若$\angle B = 36^{\circ}$,$\angle D = 16^{\circ}$,求$\angle P$的度数.
【问题探究】
(2)如图③,直线$AP$平分$\triangle ABO$的外角$\angle FAD$,$CP$平分$\triangle COD$的外角$\angle BCE$.若$\angle B = m^{\circ}$,$\angle D = n^{\circ}$,且$m - n = 20$,$mn = 300$,求$\angle P$的度数.

【简单应用】
(1)如图②,$AP$,$CP$分别平分$\angle BAD$,$\angle BCD$.若$\angle B = 36^{\circ}$,$\angle D = 16^{\circ}$,求$\angle P$的度数.
【问题探究】
(2)如图③,直线$AP$平分$\triangle ABO$的外角$\angle FAD$,$CP$平分$\triangle COD$的外角$\angle BCE$.若$\angle B = m^{\circ}$,$\angle D = n^{\circ}$,且$m - n = 20$,$mn = 300$,求$\angle P$的度数.
答案:
13.(1)
∵AP,CP分别平分∠BAD,∠BCD,
∴∠1=∠2,∠3=∠4.
∵易得$\begin{cases} ∠P+∠3=∠2+∠B①, \\ ∠P+∠1=∠4+∠D②, \end{cases}$
∴由①+②,得2∠P+∠1+∠3=∠2+∠4+∠B+∠D,即2∠P=∠B+∠D.
∵∠B=36°,∠D=16°,
∴2∠P=36°+16°=52°,
∴∠P=26° (2)如图,
∵AP平分△ABO的外角∠FAD,CP平分△COD的外角∠BCE,
∴∠1=∠2,∠3=∠4,
∴∠PAD=180°−∠2,∠PCD=180°−∠3.
∵易得∠P+∠PAD=∠D+∠PCD,
∴∠P+(180°−∠2)=∠D+(180°−∠3),即∠P−∠2=∠D−∠3①.
∵易得∠P+∠PAB=∠B+∠4,∠1=∠PAB,
∴∠P+∠1=∠B+∠4②.由①+②,得2∠P=∠B+∠D.
∵∠B=m°,∠D=n°,
∴∠P= $\frac{1}{2}$(∠B+∠D)= $\frac{1}{2}$×(m°+n°)= $\frac{(m + n)°}{2}$.
∵m - n=20,mn=300,
∴(m + n)²=(m - n)²+4mn=400 + 1200=1600 = 40²,即m + n=40(负值舍去),
∴∠P= $\frac{40°}{2}$=20°

13.(1)
∵AP,CP分别平分∠BAD,∠BCD,
∴∠1=∠2,∠3=∠4.
∵易得$\begin{cases} ∠P+∠3=∠2+∠B①, \\ ∠P+∠1=∠4+∠D②, \end{cases}$
∴由①+②,得2∠P+∠1+∠3=∠2+∠4+∠B+∠D,即2∠P=∠B+∠D.
∵∠B=36°,∠D=16°,
∴2∠P=36°+16°=52°,
∴∠P=26° (2)如图,
∵AP平分△ABO的外角∠FAD,CP平分△COD的外角∠BCE,
∴∠1=∠2,∠3=∠4,
∴∠PAD=180°−∠2,∠PCD=180°−∠3.
∵易得∠P+∠PAD=∠D+∠PCD,
∴∠P+(180°−∠2)=∠D+(180°−∠3),即∠P−∠2=∠D−∠3①.
∵易得∠P+∠PAB=∠B+∠4,∠1=∠PAB,
∴∠P+∠1=∠B+∠4②.由①+②,得2∠P=∠B+∠D.
∵∠B=m°,∠D=n°,
∴∠P= $\frac{1}{2}$(∠B+∠D)= $\frac{1}{2}$×(m°+n°)= $\frac{(m + n)°}{2}$.
∵m - n=20,mn=300,
∴(m + n)²=(m - n)²+4mn=400 + 1200=1600 = 40²,即m + n=40(负值舍去),
∴∠P= $\frac{40°}{2}$=20°