12. 若多项式$x^{2}+2(m - 3)x + 16$是完全平方式,则$m$的值为
-1或7
.答案:12. $-1$ 或 $7$ 解析:$x^{2} + 2(m - 3)x + 16 = x^{2} + 2(m - 3)x + 4^{2}$. $\because$ 多项式 $x^{2} + 2(m - 3)x + 16$ 是完全平方式,$\therefore 2(m - 3) = ±2×4$,解得 $m = -1$ 或 $7$.
解析:
解:$x^{2}+2(m - 3)x + 16 = x^{2}+2(m - 3)x + 4^{2}$
∵多项式$x^{2}+2(m - 3)x + 16$是完全平方式
∴$2(m - 3)=\pm 2×4$
当$2(m - 3)=8$时,$m - 3=4$,解得$m=7$
当$2(m - 3)=-8$时,$m - 3=-4$,解得$m=-1$
综上,$m=-1$或$7$
∵多项式$x^{2}+2(m - 3)x + 16$是完全平方式
∴$2(m - 3)=\pm 2×4$
当$2(m - 3)=8$时,$m - 3=4$,解得$m=7$
当$2(m - 3)=-8$时,$m - 3=-4$,解得$m=-1$
综上,$m=-1$或$7$
13. (2025·厦门校级月考)用“筝形”和“镖形”两种不同的瓷砖铺设成如图所示的地面,则“筝形”瓷砖中的内角$∠ BCD=\_\_\_\_\_\_^{\circ}$.

答案:13. $144$ 解析:如题图,$\because 5$ 块形状相同、大小相等的“筝形”瓷砖围成一个十边形,$∠BCD$ 是这个十边形的一个内角,$\therefore$ 这个十边形的各个内角均相等,$\therefore ∠BCD = (10 - 2)×180^{\circ}÷10 = 144^{\circ}$.
解析:
由图可知,5块形状相同、大小相等的“筝形”瓷砖围成一个十边形,且该十边形的各个内角均相等,$∠BCD$是这个十边形的一个内角。
根据多边形内角和公式:$n$边形内角和为$(n - 2)×180^{\circ}$,对于十边形,其内角和为$(10 - 2)×180^{\circ} = 1440^{\circ}$。
因为十边形各内角相等,所以每个内角的度数为$1440^{\circ}÷10 = 144^{\circ}$,即$∠BCD = 144^{\circ}$。
$144$
根据多边形内角和公式:$n$边形内角和为$(n - 2)×180^{\circ}$,对于十边形,其内角和为$(10 - 2)×180^{\circ} = 1440^{\circ}$。
因为十边形各内角相等,所以每个内角的度数为$1440^{\circ}÷10 = 144^{\circ}$,即$∠BCD = 144^{\circ}$。
$144$
14. 若$x^{2}-5x + 3 = 0$,则$x(x - 1)(x - 2)(x - 3)(x - 4)(x - 5)=$
-9
.答案:14. $-9$ 解析:$\because x^{2} - 5x + 3 = 0$,$\therefore x^{2} - 5x = -3$,$\therefore x(x - 1)(x - 2)(x - 3)(x - 4)(x - 5) = (x - 1)(x - 4)(x - 2)(x - 3)(x - 5)x = (x^{2} - 5x + 4)(x^{2} - 5x + 6)(x^{2} - 5x) = (-3 + 4)×(-3 + 6)×(-3) = -9$.
15. 在如图所示的折线图形中,$α+β=\_\_\_\_\_\_^{\circ}$.

答案:
15. $85$ 解析:如图,连接 $BC$. 在 $△ EBC$ 中,$∠1 + ∠2 = 180^{\circ}-∠E = 140^{\circ}$. 在四边形 $ABCD$ 中,$∠A + ∠ABC + ∠BCD + ∠D = 360^{\circ}$,$\therefore 70^{\circ}+α + ∠1 + ∠2 + β + 65^{\circ}=360^{\circ}$,$\therefore α + β = 360^{\circ}-70^{\circ}-65^{\circ}-140^{\circ}=85^{\circ}$.

15. $85$ 解析:如图,连接 $BC$. 在 $△ EBC$ 中,$∠1 + ∠2 = 180^{\circ}-∠E = 140^{\circ}$. 在四边形 $ABCD$ 中,$∠A + ∠ABC + ∠BCD + ∠D = 360^{\circ}$,$\therefore 70^{\circ}+α + ∠1 + ∠2 + β + 65^{\circ}=360^{\circ}$,$\therefore α + β = 360^{\circ}-70^{\circ}-65^{\circ}-140^{\circ}=85^{\circ}$.
16. 关于$x$的不等式组$\begin{cases}-x + a < 2,\\\dfrac{3x - 1}{2}≤ x + 1\end{cases}$恰有3个整数解,则$a$的取值范围是 ______ .
答案:16. $2≤ a < 3$ 解析:$\begin{cases}-x + a < 2, &①\frac{3x - 1}{2}≤ x + 1, &②\end{cases}$ 解不等式 $①$ 得 $x > a - 2$,解不等式 $②$ 得 $x≤ 3$. $\because$ 不等式组有解,$\therefore$ 不等式组的解集为 $a - 2 < x≤ 3$. $\because$ 不等式组 $\begin{cases}-x + a < 2,\frac{3x - 1}{2}≤ x + 1\end{cases}$ 恰有 $3$ 个整数解,则整数解为 $1$,$2$,$3$,$\therefore 0≤ a - 2 < 1$,解得 $2≤ a < 3$.
解析:
解:$\begin{cases}-x + a < 2, &①\\\dfrac{3x - 1}{2}≤ x + 1, &②\end{cases}$
解不等式①得:$x > a - 2$
解不等式②得:$3x - 1 ≤ 2x + 2$
$3x - 2x ≤ 2 + 1$
$x ≤ 3$
$\because$ 不等式组有解,$\therefore$ 解集为 $a - 2 < x ≤ 3$
$\because$ 恰有3个整数解,整数解为1,2,3
$\therefore 0 ≤ a - 2 < 1$
解得 $2 ≤ a < 3$
$2≤ a < 3$
解不等式①得:$x > a - 2$
解不等式②得:$3x - 1 ≤ 2x + 2$
$3x - 2x ≤ 2 + 1$
$x ≤ 3$
$\because$ 不等式组有解,$\therefore$ 解集为 $a - 2 < x ≤ 3$
$\because$ 恰有3个整数解,整数解为1,2,3
$\therefore 0 ≤ a - 2 < 1$
解得 $2 ≤ a < 3$
$2≤ a < 3$
17. 如图,在$Rt△ ABC$中,$∠ ABC = 90^{\circ}$,$∠ BAC = 50^{\circ}$,$D$为$AC$的中点,$E$是射线$CB$上一点,将$△ CDE$沿着直线$DE$翻折得到$△ FDE$,当$DF// AB$时,$∠ DEB$的度数为

65°或25°
.答案:
17. $65^{\circ}$ 或 $25^{\circ}$ 解析:$\because ∠ABC = 90^{\circ}$,$∠BAC = 50^{\circ}$,$\therefore ∠C = 90^{\circ}-∠BAC = 40^{\circ}$.
①当点 $E$ 在线段 $CB$ 上,且 $DF// AB$ 时,则 $∠FDC = ∠BAC = 50^{\circ}$,由折叠得 $∠CDE = ∠FDE = \frac{1}{2}∠FDC = \frac{1}{2}×50^{\circ}=25^{\circ}$,$\therefore ∠DEB = ∠C + ∠CDE = 40^{\circ}+25^{\circ}=65^{\circ}$;
②当点 $E$ 在线段 $CB$ 的延长线上,且 $DF// AB$ 时,如图,则 $∠ADF = ∠A = 50^{\circ}$,$\therefore ∠CDF = 180^{\circ}-∠ADF = 130^{\circ}$,$\therefore ∠CDE = ∠FDE = \frac{1}{2}×(360^{\circ}-∠CDF) = 115^{\circ}$,$\therefore ∠DEB = 180^{\circ}-∠C - ∠CDE = 25^{\circ}$,故答案为 $65^{\circ}$ 或 $25^{\circ}$.

17. $65^{\circ}$ 或 $25^{\circ}$ 解析:$\because ∠ABC = 90^{\circ}$,$∠BAC = 50^{\circ}$,$\therefore ∠C = 90^{\circ}-∠BAC = 40^{\circ}$.
①当点 $E$ 在线段 $CB$ 上,且 $DF// AB$ 时,则 $∠FDC = ∠BAC = 50^{\circ}$,由折叠得 $∠CDE = ∠FDE = \frac{1}{2}∠FDC = \frac{1}{2}×50^{\circ}=25^{\circ}$,$\therefore ∠DEB = ∠C + ∠CDE = 40^{\circ}+25^{\circ}=65^{\circ}$;
②当点 $E$ 在线段 $CB$ 的延长线上,且 $DF// AB$ 时,如图,则 $∠ADF = ∠A = 50^{\circ}$,$\therefore ∠CDF = 180^{\circ}-∠ADF = 130^{\circ}$,$\therefore ∠CDE = ∠FDE = \frac{1}{2}×(360^{\circ}-∠CDF) = 115^{\circ}$,$\therefore ∠DEB = 180^{\circ}-∠C - ∠CDE = 25^{\circ}$,故答案为 $65^{\circ}$ 或 $25^{\circ}$.
18. 如图,已知$CD// GH$,点$B$在$GH$上,点$A$为平面内一点,$AB⊥ AD$,过点$A$作$AF⊥ CD$,$AE$平分$∠ FAD$,$AC$平分$∠ FAB$,若$∠ ABC+∠ GBC = 180^{\circ}$,$∠ ACB = 4∠ FAE$,则$∠ ABG=$

22.5°
.答案:
18. $22.5^{\circ}$ 解析:延长 $FA$ 交 $GB$ 于点 $M$,如图所示. $\because CD// GH$,$AF⊥ CD$,$\therefore AM⊥ GH$. $\because AE$ 平分 $∠FAD$,$\therefore ∠FAD = 2∠FAE$,$∠FAE = ∠DAE$. $\because AB⊥ AD$,$\therefore ∠FAD + ∠MAB = 90^{\circ}$. $\because ∠MAB + ∠ABM = 90^{\circ}$,$\therefore ∠ABM = ∠FAD = 2∠FAE$,$\therefore ∠MAB = 90^{\circ}-∠ABM = 90^{\circ}-2∠FAE$. $\because AC$ 平分 $∠FAB$,$\therefore ∠BAC = ∠FAC = ∠FAD + ∠DAC = 2∠FAE + ∠DAC$. $\because ∠BAC + ∠DAC = 90^{\circ}$,$\therefore 2∠FAE + ∠DAC + ∠DAC = 90^{\circ}$,整理得 $∠DAC = 45^{\circ}-∠FAE$,$\therefore ∠BAC = 90^{\circ}-∠DAC = 90^{\circ}-(45^{\circ}-∠FAE) = 45^{\circ}+∠FAE$. $\because ∠ACB = 4∠FAE$,$\therefore$ 在 $△ ABC$ 中,$∠ABC = 180^{\circ}-∠BAC - ∠ACB = 180^{\circ}-(45^{\circ}+∠FAE) - 4∠FAE = 135^{\circ}-5∠FAE$. $\because ∠ABC + ∠GBC = 180^{\circ}$,$\therefore ∠ABC + ∠ABC + ∠ABG = 180^{\circ}$,即 $2∠ABC + ∠ABG = 180^{\circ}$,$2(135^{\circ}-5∠FAE) + 2∠FAE = 180^{\circ}$,解得 $∠FAE = 11.25^{\circ}$,$\therefore ∠ABG = 2∠FAE = 22.5^{\circ}$.

18. $22.5^{\circ}$ 解析:延长 $FA$ 交 $GB$ 于点 $M$,如图所示. $\because CD// GH$,$AF⊥ CD$,$\therefore AM⊥ GH$. $\because AE$ 平分 $∠FAD$,$\therefore ∠FAD = 2∠FAE$,$∠FAE = ∠DAE$. $\because AB⊥ AD$,$\therefore ∠FAD + ∠MAB = 90^{\circ}$. $\because ∠MAB + ∠ABM = 90^{\circ}$,$\therefore ∠ABM = ∠FAD = 2∠FAE$,$\therefore ∠MAB = 90^{\circ}-∠ABM = 90^{\circ}-2∠FAE$. $\because AC$ 平分 $∠FAB$,$\therefore ∠BAC = ∠FAC = ∠FAD + ∠DAC = 2∠FAE + ∠DAC$. $\because ∠BAC + ∠DAC = 90^{\circ}$,$\therefore 2∠FAE + ∠DAC + ∠DAC = 90^{\circ}$,整理得 $∠DAC = 45^{\circ}-∠FAE$,$\therefore ∠BAC = 90^{\circ}-∠DAC = 90^{\circ}-(45^{\circ}-∠FAE) = 45^{\circ}+∠FAE$. $\because ∠ACB = 4∠FAE$,$\therefore$ 在 $△ ABC$ 中,$∠ABC = 180^{\circ}-∠BAC - ∠ACB = 180^{\circ}-(45^{\circ}+∠FAE) - 4∠FAE = 135^{\circ}-5∠FAE$. $\because ∠ABC + ∠GBC = 180^{\circ}$,$\therefore ∠ABC + ∠ABC + ∠ABG = 180^{\circ}$,即 $2∠ABC + ∠ABG = 180^{\circ}$,$2(135^{\circ}-5∠FAE) + 2∠FAE = 180^{\circ}$,解得 $∠FAE = 11.25^{\circ}$,$\therefore ∠ABG = 2∠FAE = 22.5^{\circ}$.
三、解答题(共66分)
19. (4分)计算:
(1)$(-\dfrac{1}{3})^{-2}+(\dfrac{1}{36})^{0}+(-5)^{3}÷ (-5)^{2}$;
(2)$(m + 3n)(m - 2n)-(2m - n)^{2}$.
19. (4分)计算:
(1)$(-\dfrac{1}{3})^{-2}+(\dfrac{1}{36})^{0}+(-5)^{3}÷ (-5)^{2}$;
(2)$(m + 3n)(m - 2n)-(2m - n)^{2}$.
答案:19.(1)原式 $= 9 + 1 - 5 = 5$.
(2)原式 $= m^{2} - 2mn + 3mn - 6n^{2} - 4m^{2} + 4mn - n^{2} = -3m^{2} + 5mn - 7n^{2}$.
(2)原式 $= m^{2} - 2mn + 3mn - 6n^{2} - 4m^{2} + 4mn - n^{2} = -3m^{2} + 5mn - 7n^{2}$.
20. (4分)解下列方程组或不等式组:
(1)$\begin{cases}3x - y = -4,\\x - 2y = -3;\end{cases}$
(2)$\begin{cases}2x + 4 > 0,\\\dfrac{3x + 2}{3}-1 < \dfrac{2 - x}{4}.\end{cases}$
(1)$\begin{cases}3x - y = -4,\\x - 2y = -3;\end{cases}$
(2)$\begin{cases}2x + 4 > 0,\\\dfrac{3x + 2}{3}-1 < \dfrac{2 - x}{4}.\end{cases}$
答案:20.(1)$\begin{cases}3x - y = -4, &①\\x - 2y = -3, &②\end{cases}$ $①×2 - ②$ 可得 $5x = -5$,解得 $x = -1$,将 $x = -1$ 代入 $①$,解得 $y = 1$,方程组的解为 $\begin{cases}x = -1,\\y = 1.\end{cases}$
(2)$\begin{cases}2x + 4 > 0, &①\frac{3x + 2}{3} - 1 < \frac{2 - x}{4}, &②\end{cases}$ 解不等式 $①$ 得 $x > -2$,解不等式 $②$ 得 $x < \frac{2}{3}$,故该不等式组的解集为 $-2 < x < \frac{2}{3}$.
(2)$\begin{cases}2x + 4 > 0, &①\frac{3x + 2}{3} - 1 < \frac{2 - x}{4}, &②\end{cases}$ 解不等式 $①$ 得 $x > -2$,解不等式 $②$ 得 $x < \frac{2}{3}$,故该不等式组的解集为 $-2 < x < \frac{2}{3}$.
21. (6分)(2025·无锡期末)如图,在每个小正方形的边长为1个单位长度的网格中,$△ ABC$的顶点均在格点(网格线的交点)上,直线$l$经过小正方形的边.
(1)画出线段$AC$的垂直平分线$m$;
(2)画出与$△ ABC$关于直线$l$成轴对称的$△ A_{1}B_{1}C_{1}$;
(3)画出与$△ ABC$关于点$C$成中心对称的$△ A_{2}B_{2}C$.

(1)画出线段$AC$的垂直平分线$m$;
(2)画出与$△ ABC$关于直线$l$成轴对称的$△ A_{1}B_{1}C_{1}$;
(3)画出与$△ ABC$关于点$C$成中心对称的$△ A_{2}B_{2}C$.
答案:
21.(1)如图,直线 $m$ 即为所求.
(2)如图,$△ A_{1}B_{1}C_{1}$ 即为所求.
(3)如图,$△ A_{2}B_{2}C$ 即为所求.

21.(1)如图,直线 $m$ 即为所求.
(2)如图,$△ A_{1}B_{1}C_{1}$ 即为所求.
(3)如图,$△ A_{2}B_{2}C$ 即为所求.