零五网 全部参考答案 经纶学典学霸 2026年学霸题中题七年级数学下册苏科版 第75页解析答案
8. (1)若二元一次方程组$\begin{cases}4x + 3y = 14, \\ax + (a + 2)y = \frac{4}{7}\end{cases}$的解$x$和$y$相等,则$a =$ ______ .
(2)已知关于$x$,$y$的方程组$\begin{cases}3x + my = 0, \\x - y = 4\end{cases}$的解是$\begin{cases}x = 2, \\y = ■\end{cases}$,其中$y$的值被盖住了,但仍能求出$m$的值,则$m =$ ______ .
答案:8. (1)$-\frac {6}{7}$解析:因为$x,y$的值相等,所以$4x+3x=14$,解得$x=2$,则$y=2$.所以$2a+2a+4=\frac {4}{7}$,解得$a=-\frac {6}{7}$.
(2)3 解析:把$x=2$代入$x-y=4$中,得$y=-2$,把$\{\begin{array}{l} x=2,\\ y=-2\end{array} $代入$3x+my=0$中,得$6-2m=0$,解得$m=3$.
9. 甲、乙两人解关于$x$,$y$的方程组$\begin{cases}3x - by = -1, &① \\ax + by = -5 &②\end{cases}$时,甲因看错$a$得到方程组的解为$\begin{cases}x = 1, \\y = 2,\end{cases}$乙将方程②中的$b$写成了它的相反数得到方程组的解为$\begin{cases}x = -1, \\y = -1,\end{cases}$求$a$,$b$的值.
答案:9. 因为甲看错方程组$\{\begin{array}{l} 3x-by=-1,①\\ ax+by=-5②\end{array} $中的$a$,得到方程组的解为$\{\begin{array}{l} x=1,\\ y=2,\end{array} $所以将$\{\begin{array}{l} x=1,\\ y=2\end{array} $代入①,得$3-2b=-1$,所以$b=2$.因为乙把方程②中的$b$看成了它的相反数,得到方程组的解为$\{\begin{array}{l} x=-1,\\ y=-1,\end{array} $所以将$\{\begin{array}{l} x=-1,\\ y=-1\end{array} $代入$ax-2y=-5$中,得$a=7$.
解析:
解:因为甲看错$a$,得到解$\begin{cases}x = 1 \\ y = 2\end{cases}$,将其代入①得:$3×1 - b×2=-1$,即$3 - 2b=-1$,解得$b = 2$。
乙将②中$b$写成相反数,即$-b=-2$,此时方程②为$ax - 2y=-5$,将$\begin{cases}x = -1 \\ y = -1\end{cases}$代入得:$a×(-1)-2×(-1)=-5$,即$-a + 2=-5$,解得$a = 7$。
综上,$a = 7$,$b = 2$。
10. 阅读下面的内容,利用整体思想通过换元的方法来解决问题.
题目:已知方程组$\begin{cases}a_{1}x + b_{1}y = c_{1}, &① \\a_{2}x + b_{2}y = c_{2} &②\end{cases}$的解是$\begin{cases}x = 4, \\y = 6,\end{cases}$求方程组$\begin{cases}2a_{1}x + 3b_{1}y = c_{1}, &② \\2a_{2}x + 3b_{2}y = c_{2} &②\end{cases}$的解.
解:方程组$\begin{cases}2a_{1}x + 3b_{1}y = c_{1}, &② \\2a_{2}x + 3b_{2}y = c_{2} &②\end{cases}$可以变形为方程组$\begin{cases}a_{1} · 2x + b_{1} · 3y = c_{1}, &③ \\a_{2} · 2x + b_{2} · 3y = c_{2} &③\end{cases}$
设$2x = m$,$3y = n$,则方程组③可化为$\begin{cases}a_{1}m + b_{1}n = c_{1}, &④ \\a_{2}m + b_{2}n = c_{2} &④\end{cases}$
比较方程组④与方程组①可得$\begin{cases}m = 4, \= 6,\end{cases}$即$\begin{cases}2x = 4, \\3y = 6,\end{cases}$所以方程组②的解为$\begin{cases}x = 2, \\y = 2.\end{cases}$
参考上述方法,解决下列问题:
(1)若方程组$\begin{cases}5x - 2y = 4, \\2x - 3y = -5\end{cases}$的解是$\begin{cases}x = 2, \\y = 3,\end{cases}$则方程组$\begin{cases}5(x + 1) - 2(y - 2) = 4, \\2(x + 1) - 3(y - 2) = -5\end{cases}$的解为 ______ ;
(2)若方程组$\begin{cases}a_{1}x + b_{1}y = c_{1}, \\a_{2}x + b_{2}y = c_{2}\end{cases}$的解是$\begin{cases}x = -1, \\y = 3,\end{cases}$则方程组$\begin{cases}a_{1}(x - 2) + 2b_{1}y = c_{1}, \\a_{2}(x - 2) + 2b_{2}y = c_{2}\end{cases}$的解为 ______ ;
(3)若方程组$\begin{cases}a_{1}x + b_{1}y = c_{1}, \\a_{2}x + b_{2}y = c_{2}\end{cases}$的解为$\begin{cases}x = 4, \\y = 6,\end{cases}$求方程组$\begin{cases}4a_{1}x + 3b_{1}y = 5c_{1}, \\4a_{2}x + 3b_{2}y = 5c_{2}\end{cases}$的解.
答案:10. (1)$\{\begin{array}{l} x=1,\\ y=5\end{array} $解析:由题意可得$\{\begin{array}{l} x+1=2,\\ y-2=3,\end{array} $得方程组的解为$\{\begin{array}{l} x=1,\\ y=5.\end{array} $
(2)$\{\begin{array}{l} x=1,\\ y=\frac {3}{2}\end{array} $解析:由题意可得$\{\begin{array}{l} x-2=-1,\\ 2y=3,\end{array} $得方程组的解为$\{\begin{array}{l} x=1,\\ y=\frac {3}{2}.\end{array} $
(3)因为方程组$\{\begin{array}{l} a_{1}x+b_{1}y=c_{1},\\ a_{2}x+b_{2}y=c_{2}\end{array} $的解为$\{\begin{array}{l} x=4,\\ y=6,\end{array} $又因为$\{\begin{array}{l} 4a_{1}x+3b_{1}y=5c_{1},\\ 4a_{2}x+3b_{2}y=5c_{2},\end{array} $所以$\{\begin{array}{l} \frac {4}{5}a_{1}x+\frac {3}{5}b_{1}y=c_{1},\\ \frac {4}{5}a_{2}x+\frac {3}{5}b_{2}y=c_{2},\end{array} $所以$\{\begin{array}{l} \frac {4}{5}x=4,\\ \frac {3}{5}y=6,\end{array} $解得$\{\begin{array}{l} x=5,\\ y=10.\end{array} $
上一页 下一页