1. 下列方程组中,是三元一次方程组的是(
A.$\begin{cases}3x + 2y = 4, \\ y + z = 5, \\ x^{2} + y = 2\end{cases}$
B.$\begin{cases}\dfrac{1}{x} + \dfrac{1}{y} = 2, \\ 3x - 4y + z = -1, \\ x + z = 2\end{cases}$
C.$\begin{cases}3x + y + z = -2, \\ y - 3z = 5, \\ x + 7z = 9\end{cases}$
D.$\begin{cases}x - y = 2, \\ y + 4x = 5, \\ 2x + y = 0\end{cases}$
C
)A.$\begin{cases}3x + 2y = 4, \\ y + z = 5, \\ x^{2} + y = 2\end{cases}$
B.$\begin{cases}\dfrac{1}{x} + \dfrac{1}{y} = 2, \\ 3x - 4y + z = -1, \\ x + z = 2\end{cases}$
C.$\begin{cases}3x + y + z = -2, \\ y - 3z = 5, \\ x + 7z = 9\end{cases}$
D.$\begin{cases}x - y = 2, \\ y + 4x = 5, \\ 2x + y = 0\end{cases}$
答案:1. C 解析:A. 第三个方程中x的次数为2,不符合题意;B. 第一个方程不是整式方程,不符合题意;C. 此方程组为三元一次方程组,符合题意;D. 方程组只含有两个未知数,不符合题意. 故选C.
2. 解三元一次方程组$\begin{cases}3x - y + z = 4, &① \\ 2x - y - z = 12, &② \\ x + y + 2z = 6, &③\end{cases}$若先消去$z$,组成关于$x$,$y$的方程组,则下列应对方程组进行的变形,其中正确的是( )
A.① - ②,② + ③
B.①×2 + ③,②×2 + ③
C.① + ②,②×2 + ③
D.① + ③,② + ③
A.① - ②,② + ③
B.①×2 + ③,②×2 + ③
C.① + ②,②×2 + ③
D.① + ③,② + ③
答案:2. C 解析:由题意知,①+②得,5x−2y=16,②×2+③得,5x−y=30,所以消去z,组成关于x,y的方程组为$\{\begin{array}{l} 5x-2y=16,\\ 5x-y=30,\end{array} $故选C.
3. 已知方程组$\begin{cases}5x + 3y + 2z = 2, &① \\ 2x - y = 7, &② \\ 3x - 4z = 4, &③\end{cases}$由②,得$y =$ ______ ④;由③,得$z =$ ______ ⑤;将④⑤代入①,得$x =$ ______ 。
答案:3. 2x−7 $\frac {3}{4}x-1$ 2 解析:2x−y=7变形可得y=2x−7,3x−4z=4变形可得$z=\frac {3}{4}x-1$,将④⑤代入①中得$5x+3(2x-7)+2(\frac {3}{4}x-1)=2$,解得x=2.
解析:
2x - 7;$\frac{3}{4}x - 1$;2
4. (2025·扬州校级月考)小川同学在学习方程组的过程中发现,三元一次方程组$\begin{cases}3x + 2y + z = 9, \\ 2x + 3y + 4z = 11\end{cases}$解不出$x$,$y$,$z$的具体数值,但可以解出$x + y + z$的值为 ______ 。
答案:4. 4 解析:$\{\begin{array}{l} 3x+2y+z=9,①\\ 2x+3y+4z=11,②\end{array} $①+②得5x+5y+5z=20,所以x+y+z=4.
解析:
$\begin{cases}3x + 2y + z = 9,① \\ 2x + 3y + 4z = 11,②\end{cases}$
①+②得:$5x + 5y + 5z = 20$
两边同时除以5得:$x + y + z = 4$
4
①+②得:$5x + 5y + 5z = 20$
两边同时除以5得:$x + y + z = 4$
4
5. 解三元一次方程组:
(1) $\begin{cases}x + 2y = 3, \\ 2y = 3z, \\ x - z = -1;\end{cases}$
(2) $\begin{cases}a + b + c = 1, \\ a - b + c = 5, \\ 4a + 2b + c = 2;\end{cases}$
(3) $\begin{cases}2x + y = 29, \\ 2y + z = 29, \\ 2z + x = 32;\end{cases}$
(4) $\begin{cases}x : y = 2 : 3, \\ x : z = 5 : 4, \\ x + y + z = 33.\end{cases}$
(1) $\begin{cases}x + 2y = 3, \\ 2y = 3z, \\ x - z = -1;\end{cases}$
(2) $\begin{cases}a + b + c = 1, \\ a - b + c = 5, \\ 4a + 2b + c = 2;\end{cases}$
(3) $\begin{cases}2x + y = 29, \\ 2y + z = 29, \\ 2z + x = 32;\end{cases}$
(4) $\begin{cases}x : y = 2 : 3, \\ x : z = 5 : 4, \\ x + y + z = 33.\end{cases}$
答案:5. (1)$\{\begin{array}{l} x+2y=3,①\\ 2y=3z,②\\ x-z=-1,③\end{array} $由①−②,得x=3−3z ④,将④代入③,得3−3z−z=−1,解得z=1,将z=1代入④,得x=0,将x=0代入①,得y=1.5,所以该方程组的解为$\{\begin{array}{l} x=0,\\ y=1.5,\\ z=1.\end{array} $
(2)$\{\begin{array}{l} a+b+c=1,①\\ a-b+c=5,②\\ 4a+2b+c=2,③\end{array} $由①−②,得2b=−4,解得b=−2,把b=−2代入②③,可得$\{\begin{array}{l} a+c=3,\\ 4a+c=6,\end{array} $解得$\{\begin{array}{l} a=1,\\ c=2,\end{array} $所以原方程组的解为$\{\begin{array}{l} a=1,\\ b=-2,\\ c=2.\end{array} $
(3)$\{\begin{array}{l} 2x+y=29,①\\ 2y+z=29,②\\ 2z+x=32,③\end{array} $由①×2−②,得4x−z=29 ④,由④×2+③,得9x=90,解得x=10,把x=10代入①③,可得$\{\begin{array}{l} 20+y=29,\\ 2z+10=32,\end{array} $解得$\{\begin{array}{l} y=9,\\ z=11,\end{array} $所以原方程组的解为$\{\begin{array}{l} x=10,\\ y=9,\\ z=11.\end{array} $
(4)$\{\begin{array}{l} x:y=2:3,①\\ x:z=5:4,②\\ x+y+z=33,③\end{array} $由①得$y=\frac {3}{2}x$,由②得$z=\frac {4}{5}x$,代入③中得$x+\frac {3}{2}x+\frac {4}{5}x=33$,解得x=10,所以$y=\frac {3}{2}x=15,z=$$\frac {4}{5}x=8$,所以原方程组的解为$\{\begin{array}{l} x=10,\\ y=15,\\ z=8.\end{array} $
一题多解 因为x:y=2:3且x:z=5:4,可设x=10k,则y=15k,z=8k,因为x+y+z=33,所以10k+15k+8k=33,解得k=1,所以x=10,y=15,z=8,所以原方程组的解为$\{\begin{array}{l} x=10,\\ y=15,\\ z=8.\end{array} $
(2)$\{\begin{array}{l} a+b+c=1,①\\ a-b+c=5,②\\ 4a+2b+c=2,③\end{array} $由①−②,得2b=−4,解得b=−2,把b=−2代入②③,可得$\{\begin{array}{l} a+c=3,\\ 4a+c=6,\end{array} $解得$\{\begin{array}{l} a=1,\\ c=2,\end{array} $所以原方程组的解为$\{\begin{array}{l} a=1,\\ b=-2,\\ c=2.\end{array} $
(3)$\{\begin{array}{l} 2x+y=29,①\\ 2y+z=29,②\\ 2z+x=32,③\end{array} $由①×2−②,得4x−z=29 ④,由④×2+③,得9x=90,解得x=10,把x=10代入①③,可得$\{\begin{array}{l} 20+y=29,\\ 2z+10=32,\end{array} $解得$\{\begin{array}{l} y=9,\\ z=11,\end{array} $所以原方程组的解为$\{\begin{array}{l} x=10,\\ y=9,\\ z=11.\end{array} $
(4)$\{\begin{array}{l} x:y=2:3,①\\ x:z=5:4,②\\ x+y+z=33,③\end{array} $由①得$y=\frac {3}{2}x$,由②得$z=\frac {4}{5}x$,代入③中得$x+\frac {3}{2}x+\frac {4}{5}x=33$,解得x=10,所以$y=\frac {3}{2}x=15,z=$$\frac {4}{5}x=8$,所以原方程组的解为$\{\begin{array}{l} x=10,\\ y=15,\\ z=8.\end{array} $
一题多解 因为x:y=2:3且x:z=5:4,可设x=10k,则y=15k,z=8k,因为x+y+z=33,所以10k+15k+8k=33,解得k=1,所以x=10,y=15,z=8,所以原方程组的解为$\{\begin{array}{l} x=10,\\ y=15,\\ z=8.\end{array} $
6. (2025·泉州期末)若方程组$\begin{cases}x + y = 9, \\ y + z = 7, \\ z + x = 2\end{cases}$的解满足方程$3k - x - y - z = 6$,则$k$的值为( )
A.1
B.3
C.5
D.7
A.1
B.3
C.5
D.7
答案:6. C 解析:解方程组$\{\begin{array}{l} x+y=9,\\ y+z=7,\\ z+x=2\end{array} $得x=2,y=7,z=0,代入3k−x−y−z=6得3k−2−7−0=6,解得k=5,故选C.
一题多解 将方程组中的三个方程相加,得(x+y)+(y+z)+(z+x)=9+7+2,所以2x+2y+2z=18,所以x+y+z=9,将x+y+z=9代入方程3k−x−y−z=6中得3k−9=6,解得k=5.
一题多解 将方程组中的三个方程相加,得(x+y)+(y+z)+(z+x)=9+7+2,所以2x+2y+2z=18,所以x+y+z=9,将x+y+z=9代入方程3k−x−y−z=6中得3k−9=6,解得k=5.
7. 如图,前两个天平已保持平衡,现要求在第三个天平的右边只放$△$,要使之保持平衡,则应放$△$的数量为(

A.5个
B.6个
C.7个
D.8个
B
)A.5个
B.6个
C.7个
D.8个
答案:7. B 解析:根据题意,设圆形为x,三角形为y,正方形为z,所以$\{\begin{array}{l} 3x+2y=z+5y,①\\ 2z=x+4y,②\end{array} $所以由①得,z=3x−3y ③,把③代入②,得2(3x−3y)=x+4y,整理得x=2y,所以2z=2y+4y=6y,所以应放△的数量为6个,故选B.
8. (1)已知$\dfrac{a}{3} = \dfrac{b}{5} = \dfrac{c}{7}$,且$3a + 2b - 4c = 9$,则$a + b + c$的值等于
(2)已知$2a = 3b = 4c$,且$a - b + 7 = c - 2b$,则$a + 2b + 3c =$
(3)已知$\dfrac{3a - b}{3} = \dfrac{2a + c}{5} = \dfrac{2b + c}{7}$,则$a : b : c =$
−15
。(2)已知$2a = 3b = 4c$,且$a - b + 7 = c - 2b$,则$a + 2b + 3c =$
−23
。(3)已知$\dfrac{3a - b}{3} = \dfrac{2a + c}{5} = \dfrac{2b + c}{7}$,则$a : b : c =$
2:3:1
。答案:8. (1)−15 解析:设$\frac {a}{3}=\frac {b}{5}=\frac {c}{7}=k$,则a=3k,b=5k,c=7k. 代入3a+2b−4c=9,得9k+10k−28k=9,解得k=−1. 所以a=−3,b=−5,c=−7,所以a+b+c=−3−5−7=−15.
(2)−23 解析:设2a=3b=4c=12k,则a=6k,b=4k,c=3k. 因为a−b+7=c−2b,代入得6k−4k+7=3k−8k,解得k=−1. 所以a=−6,b=−4,c=−3. 所以a+2b+3c=−6+2×(−4)+3×(−3)=−23.
(3)2:3:1 解析:设$\frac {3a-b}{3}=\frac {2a+c}{5}=\frac {2b+c}{7}=k$,则$\{\begin{array}{l} 3a-b=3k,\\ 2a+c=5k,\\ 2b+c=7k,\end{array} $解得$\{\begin{array}{l} a=2k,\\ b=3k,\\ c=k,\end{array} $所以a:b:c=2k:3k:k=2:3:1.
(2)−23 解析:设2a=3b=4c=12k,则a=6k,b=4k,c=3k. 因为a−b+7=c−2b,代入得6k−4k+7=3k−8k,解得k=−1. 所以a=−6,b=−4,c=−3. 所以a+2b+3c=−6+2×(−4)+3×(−3)=−23.
(3)2:3:1 解析:设$\frac {3a-b}{3}=\frac {2a+c}{5}=\frac {2b+c}{7}=k$,则$\{\begin{array}{l} 3a-b=3k,\\ 2a+c=5k,\\ 2b+c=7k,\end{array} $解得$\{\begin{array}{l} a=2k,\\ b=3k,\\ c=k,\end{array} $所以a:b:c=2k:3k:k=2:3:1.
9. (滨州中考)某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排
120
名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套。答案:9. 120 解析:设应该安排x名工人缝制衣袖,y名工人缝制衣身,z名工人缝制衣领,才能使每天缝制出的衣袖、衣身、衣领正好配套,依题意,得$\{\begin{array}{l} x+y+z=210,\\ 10x:15y:12z=2:1:1,\end{array} $解得$\{\begin{array}{l} x=120,\\ y=40,\\ z=50.\end{array} $故应该安排120名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.
解析:
设应该安排$x$名工人缝制衣袖,$y$名工人缝制衣身,$z$名工人缝制衣领,才能使每天缝制出的衣袖、衣身、衣领正好配套。
依题意,得$\begin{cases}x + y + z = 210 \\ 10x:15y:12z = 2:1:1\end{cases}$
由$10x:15y = 2:1$,得$10x = 2×15y$,即$10x = 30y$,化简得$x = 3y$。
由$15y:12z = 1:1$,得$15y = 12z$,化简得$z = \frac{5}{4}y$。
将$x = 3y$,$z = \frac{5}{4}y$代入$x + y + z = 210$,得:
$3y + y + \frac{5}{4}y = 210$
$\frac{12}{4}y + \frac{4}{4}y + \frac{5}{4}y = 210$
$\frac{21}{4}y = 210$
$y = 210×\frac{4}{21} = 40$
则$x = 3y = 3×40 = 120$
故应该安排$120$名工人缝制衣袖。
依题意,得$\begin{cases}x + y + z = 210 \\ 10x:15y:12z = 2:1:1\end{cases}$
由$10x:15y = 2:1$,得$10x = 2×15y$,即$10x = 30y$,化简得$x = 3y$。
由$15y:12z = 1:1$,得$15y = 12z$,化简得$z = \frac{5}{4}y$。
将$x = 3y$,$z = \frac{5}{4}y$代入$x + y + z = 210$,得:
$3y + y + \frac{5}{4}y = 210$
$\frac{12}{4}y + \frac{4}{4}y + \frac{5}{4}y = 210$
$\frac{21}{4}y = 210$
$y = 210×\frac{4}{21} = 40$
则$x = 3y = 3×40 = 120$
故应该安排$120$名工人缝制衣袖。