零五网 全部参考答案 启东中学作业本 2026年启东中学作业本七年级数学下册苏科版宿迁专版 第155页解析答案
1. 下列不等式中,属于一元一次不等式的是(
C
)

A.$x + y ≥ - 2$
B.$x^{2} - 2x + 8 < 0$
C.$3x(2x + 2) ≤ 2x(3x - 2) + 1$
D.$\frac{1}{x} - 1 > 2$
答案:1. C
2. 若$a > b$,下列不等式变形中,正确的是(
C
)

A.$a - 5 < b - 5$
B.$3 - 2a > 3 - 2b$
C.$4a > 4b$
D.$- \frac{a}{3} > - \frac{b}{3}$
答案:2. C
3. (2024·赤峰)不等式组$\begin{cases}3x - 2 < 2x, \\ 2(x + 1) ≥ x - 1\end{cases}$的解集在数轴上表示正确的是( )

答案:3. C
解析:
解:解不等式$3x - 2 < 2x$,得$x < 2$;
解不等式$2(x + 1) ≥ x - 1$,得$x ≥ -3$;
不等式组的解集为$-3 ≤ x < 2$。
C
4. 定义一种运算:$a * b = \begin{cases}a(a ≥ b), \\ b(a < b),\end{cases}$则不等式$(2x + 1) * (2 - x) > 3$的解集是( )

A.$x > 1$或$x < - 1$
B.$- 1 < x < \frac{1}{3}$
C.$x > 1$或$x < \frac{1}{3}$
D.$x > \frac{1}{3}$或$x < - 1$
答案:4. A
解析:
情况1:当$2x + 1 ≥ 2 - x$时,即$x ≥ \frac{1}{3}$
此时$(2x + 1)*(2 - x) = 2x + 1$,不等式化为$2x + 1 > 3$
解得$x > 1$
结合前提$x ≥ \frac{1}{3}$,解集为$x > 1$
情况2:当$2x + 1 < 2 - x$时,即$x < \frac{1}{3}$
此时$(2x + 1)*(2 - x) = 2 - x$,不等式化为$2 - x > 3$
解得$x < -1$
结合前提$x < \frac{1}{3}$,解集为$x < -1$
综上,不等式的解集为$x > 1$或$x < -1$
A
5. (2024·滨湖区期末)有菜农共 10 人,每人可种茄子 3 亩或辣椒 2 亩,已知茄子每亩可收入 0.5 万元,辣椒每亩可收入 0.8 万元. 若要使总收入不低于 15.6 万元,则最多安排种茄子的人数为(
B
)

A.3
B.4
C.5
D.6
答案:5. B
解析:
设安排$x$人种茄子,则种辣椒的人数为$10 - x$人。
种茄子的亩数为$3x$亩,收入为$0.5×3x = 1.5x$万元;种辣椒的亩数为$2(10 - x)$亩,收入为$0.8×2(10 - x)=1.6(10 - x)$万元。
根据总收入不低于$15.6$万元,可得不等式:
$1.5x + 1.6(10 - x) ≥ 15.6$
$1.5x + 16 - 1.6x ≥ 15.6$
$-0.1x ≥ -0.4$
$x ≤ 4$
最多安排种茄子的人数为$4$。
B
6. (2024·南充)若关于$x$的不等式组$\begin{cases}2x - 1 < 5, \\ x < m + 1\end{cases}$的解集为$x < 3$,则$m$的取值范围是( )

A.$m > 2$
B.$m ≥ 2$
C.$m < 2$
D.$m ≤ 2$
答案:6. B
解析:
解不等式$2x - 1 < 5$,得$x < 3$。
因为不等式组$\begin{cases}2x - 1 < 5 \\ x < m + 1\end{cases}$的解集为$x < 3$,所以$m + 1 ≥ 3$,解得$m ≥ 2$。
B
7. 如果关于$x$的不等式组$\begin{cases}x - m - 3 > 0, \\ x - 3m + 1 < 0\end{cases}$无解,那么$m$的取值范围是( )

A.$m < 2$
B.$m ≤ 2$
C.$m > 2$
D.$m ≥ 2$
答案:7. B
解析:
解不等式组:
$\begin{cases}x - m - 3 > 0 \\x - 3m + 1 < 0\end{cases}$
解第一个不等式:$x > m + 3$
解第二个不等式:$x < 3m - 1$
因为不等式组无解,所以$m + 3 ≥ 3m - 1$
解得:$m ≤ 2$
B
上一页 下一页